Online Meta-Learning

Chelsea Finn*, Aravind Rajeswaran*, Sham Kakade, Sergey Levine
Deep networks + large datasets = 😍
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints
Deep networks + large datasets = 😍

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently

In many practical situations:
Learn new task with only a few datapoints
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently
Deep networks + large datasets = 😍

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently

In many practical situations:
Learn new task with only a few datapoints
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently

More realistically:
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ‘87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

More realistically:
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently

More realistically:
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

More realistically:

learn learn learn

time
In many practical situations:
Learn new task with only a few datapoints

Deep networks + large datasets = 😍

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently

More realistically:
In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution,
learn a new task efficiently

More realistically:
In many practical situations:
Learn new task with only a few datapoints

Deep networks + large datasets = 😍

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)

Given i.i.d. task distribution, learn a new task efficiently

More realistically:
Deep networks + large datasets = 😍 😊

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

More realistically:
Deep networks + large datasets = 😍

In many practical situations:
Learn new task with only a few datapoints

Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

More realistically:
slow learning ——> rapid learning
Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

Online Learning
(Hannan ’57, Zinkevich ’03)
Perform sequence of tasks while minimizing static regret.
Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

Online Learning
(Hannan ’57, Zinkevich ’03)
Perform sequence of tasks while minimizing static regret.
Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently

Online Learning
(Hannan ’57, Zinkevich ’03)
Perform sequence of tasks while minimizing static regret.

Online Meta-Learning
(this work)
Efficiently learn a sequence of tasks from a non-stationary distribution.
Meta-Learning
(Schmidhuber et al. ’87, Bengio et al. ’92)
Given i.i.d. task distribution, learn a new task efficiently.

Online Learning
(Hannan ’57, Zinkevich ’03)
Perform sequence of tasks while minimizing static regret.

Online Meta-Learning
(this work)
Efficiently learn a sequence of tasks from a non-stationary distribution.

zero-shot performance
The Online Meta-Learning Setting
The Online Meta-Learning Setting

Space of parameters \(\theta \in \Theta \subseteq \mathbb{R}^d \) and loss functions \(\ell : \Theta \rightarrow \mathbb{R} \)

For round \(t \in \{1, 2, \ldots, \infty\} \):
The Online Meta-Learning Setting

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \rightarrow \mathbb{R}$

For round $t \in \{1, 2, \ldots \infty\}$:

1. World picks a loss function $\ell_t(\cdot)$
2. Agent should pick θ_t without knowledge of ℓ_t
Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \to \mathbb{R}$

For round $t \in \{1, 2, \ldots \infty \}$:

1. World picks a loss function $\ell_t(\cdot)$
2. Agent should pick θ_t without knowledge of ℓ_t
3. Agent uses update procedure $\Phi_t : \Theta \to \Theta$, and obtains $\tilde{\theta}_t = \Phi_t(\theta_t)$
The Online Meta-Learning Setting

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \rightarrow \mathbb{R}$

For round $t \in \{1, 2, \ldots \infty \}$:

1. World picks a loss function $\ell_t(\cdot)$
2. Agent should pick θ_t without knowledge of ℓ_t
3. Agent uses update procedure $\Phi_t : \Theta \rightarrow \Theta$, and obtains $\tilde{\theta}_t = \Phi_t(\theta_t)$

\[\tilde{\theta}_t = \theta_t - \alpha \nabla \ell_t(\theta_t) \]
The Online Meta-Learning Setting

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \rightarrow \mathbb{R}$

For round $t \in \{1, 2, \ldots \infty\}$:

1. World picks a loss function $\ell_t(\cdot)$
2. Agent should pick θ_t without knowledge of ℓ_t
3. Agent uses update procedure $\Phi_t : \Theta \rightarrow \Theta$, and obtains $\tilde{\theta}_t = \Phi_t(\theta_t)$
4. Agent suffers $\ell_t(\tilde{\theta}_t)$ for the round

$\tilde{\theta}_t = \theta_t - \alpha \nabla \ell_t(\theta_t)$
The Online Meta-Learning Setting

Space of parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and loss functions $\ell : \Theta \rightarrow \mathbb{R}$

For round $t \in \{1, 2, \ldots \infty\}$:

1. World picks a loss function $\ell_t(\cdot)$
2. Agent should pick θ_t without knowledge of ℓ_t
3. Agent uses update procedure $\Phi_t : \Theta \rightarrow \Theta$, and obtains $\tilde{\theta}_t = \Phi_t(\theta_t)$
4. Agent suffers $\ell_t(\tilde{\theta}_t)$ for the round

Goal: Learning algorithm with sub-linear

$$\text{Regret}_T := \sum_{t=1}^{T} \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta))$$
Follow the Meta-Leader (FTML):

$$\theta_{t+1} = \arg \min_\theta \sum_{t=1}^{T} \ell_t(\Phi_t(\theta))$$

Can be implemented with MAML
Follow the Meta-Leader (FTML):

\[\theta_{t+1} = \arg \min_{\theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta)) \]

Can be implemented with MAML

Theorem (Informal): If \(\{\ell_t(\cdot), \hat{\ell}_t(\cdot)\} \) \(\forall t \) are \(C^2 \)-smooth and strongly convex, the sequence of models \(\{\theta_1, \theta_2, \ldots, \theta_T\} \) returned by FTML has the property:

\[
\text{Regret}_T := \sum_{t=1}^{T} \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta)) = O(\log T)
\]
Follow the Meta-Leader (FTML): \[\theta_{t+1} = \arg \min_{\theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta)) \]

Can be implemented with MAML

Theorem (Informal): If \(\{\ell_t(\cdot), \hat{\ell}_t(\cdot)\} \) \(\forall t \) are \(C^2 \)-smooth and strongly convex, the sequence of models \(\{\theta_1, \theta_2, \ldots, \theta_T\} \) returned by FTML has the property:

\[
\text{Regret}_T := \sum_{t=1}^{T} \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta)) = O(\log T)
\]

\[\implies \text{Avg. Regret} = \frac{\text{Regret}_T}{T} \to 0 \text{ as } T \to \infty \]

Learning in a sequential non-stationary setting, but still competitive with best meta-learner in hindsight!
FTML: practical instantiation of our approach, extending MAML1 meta-train on all data so far, fine-tune on current task

\cite{Finn17}
FTML: practical instantiation of our approach, extending MAML\(^1\) meta-train on all data so far, fine-tune on current task

Experiment with **sequences of tasks**:

\[\text{(1)}\] Finn et al. ICML ’17
FTML: practical instantiation of our approach, extending MAML1
meta-train on all data so far, fine-tune on current task

Experiment with sequences of tasks:
- Colored, rotated, scaled MNIST

1Finn et al. ICML ’17
Experiment with sequences of tasks:
- Colored, rotated, scaled MNIST
- 3D object pose prediction

FTML: practical instantiation of our approach, extending MAML\(^1\)
meta-train on all data so far, fine-tune on current task

Example pose prediction tasks

plane

car

chair

[1] Finn et al. ICML ’17
FTML: practical instantiation of our approach, extending MAML

meta-train on all data so far, fine-tune on current task

Experiment with **sequences of tasks**:
- Colored, rotated, scaled **MNIST**
- **3D object pose prediction**
- **CIFAR-100** classification

Example pose prediction tasks

- plane
- car
- chair

[1] Finn et al. ICML ’17
Experiments
Experiments

Learning efficiency
(# datapoints)

Learning proficiency
(error)

task index
task index
Experiments

Learning efficiency

Rainbow MNIST

Pose Prediction

Learning proficiency

Rainbow MNIST

Pose Prediction

FTML (ours)
FTML (ours) learns each new task faster & with greater proficiency,
Experiments

FTML (ours) learns each new task faster & with greater proficiency, approaches few-shot learning regime.
Takeaways

Introduced **online meta-learning** problem formulation

Meta-learning is effective in **non-stationary settings**

Similar guarantees to online learning, but **better empirical performance**

For more, come see us at **poster #5**!