On the Spectral Bias of Neural Networks

Nasim Rahaman* Aristide Baratin* Devansh Arpit
Felix Draxler Min Lin
Fred A. Hamprecht Yoshua Bengio Aaron Courville
The good old question:

Why do massive neural networks generalize when they can learn random labels?
The good old question:

Why do massive neural networks generalize when they can learn random labels?

Implicit Regularization in Deep Learning

by

Behnam Neyshabur

Theory of Deep Learning III: explaining the non-overfitting puzzle

by

T. Poggio1,2, K. Kawaguchi1,2, Q. Liao3, B. Miranda3, L. Rosasco1

with

X. Boix4, J. Hidary5, H. Mhaskar6,

1Center for Brains, Minds and Machines, MIT
2CSAIL, MIT
3Alphabet (Google) X
4Claremont Graduate University
Our proposal:

Neural networks learn simpler functions first.
But how do we quantify simplicity?

Our approach:
We use the (Fourier) Spectrum.

Lower Frequency Functions

Higher Frequency Functions
Our proposal becomes:

Neural networks learn lower frequencies first.
Green: NN Function

Blue: Target Function

Colorbar shows the Fourier amplitude of the network relative to the target.

Fully learned

Not learned
Why should I care?

One of the many reasons:

NN training is vulnerable against low frequency label noise.
Training with label noise

High frequency label noise leads to a dip in the validation loss.

Low frequency label noise does not... 😞

Validation loss on MNIST (w.r.t pure targets)
To learn how the manifold complexity attenuates the spectral bias, drop by at our poster! #72
Learning gets *easier* with *increasing* manifold complexity.

To express complex functions, the parameters must “*work together in harmony*”.

Spoilers
Thank you for your attention!