Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer, Roland Kwitt
University of Salzburg

Mandar Dixit
Microsoft

Marc Niethammer
UNC Chapel Hill
Q: What makes a **good** representation?

- Ability to **reconstruct** (→ prevalence of autoencoders)
- **Robust** to perturbations of the input
- Useful for **downstream tasks** (e.g., clustering, or classification)
- etc.
Q: What makes a **good representation?**

- Ability to **reconstruct** (→ prevalence of autoencoders)
- **Robust** to perturbations of the input
- Useful for **downstream tasks** (e.g., clustering, or classification)
- etc.

Common idea: Control (/or enforce) properties of (/on) the latent representations in \(Z \).

Unsupervised representation learning
Q: What makes a **good representation?**

- **Ability to reconstruct** (→ prevalence of autoencoders)
- **Robust** to perturbations of the input
- **Useful for downstream tasks** (e.g., clustering, or classification)
- etc.

Common idea: Control (or enforce) properties of (on) the latent representations in \mathcal{Z}.

![Diagram of unsupervised representation learning](image)

$\mathcal{X} \rightarrow \mathcal{Z} \rightarrow \mathcal{X}$

θ: $\mathcal{X} \rightarrow \mathcal{Z}$

ϕ: $\mathcal{Z} \rightarrow \mathcal{X}$

$\text{Rec}[x, \hat{x}] + \text{Reg}$

Contractive AE's [Rifai et al., ICML '11]
Q: What makes a good representation?

- Ability to reconstruct (→ prevalence of autoencoders)
- Robust to perturbations of the input
- Useful for downstream tasks (e.g., clustering, or classification)
- etc.

Common idea: Control (or enforce) properties of (on) the latent representations in \mathcal{Z}.

\[f_\theta : \mathcal{X} \rightarrow \mathcal{Z} \]
Encoder

\[g_\phi : \mathcal{Z} \rightarrow \mathcal{X} \]
Decoder

\[x \xrightarrow{\text{Perturb, or zero-out}} \]

\[\hat{x} \xrightarrow{\text{Rec}[x, \hat{x}]} \]

Denoising AE's [Vincent et al., JMLR '10]
Q: What makes a good representation?

- Ability to reconstruct (→ prevalence of autoencoders)
- Robust to perturbations of the input
- Useful for downstream tasks (e.g., clustering, or classification)
- etc.

Common idea: Control (or enforce) properties of (on) the latent representations in Z.

Unsupervised representation learning

θ: $X \rightarrow Z$

θ: $X \rightarrow Z$

Robust to perturbations of the input

Useful for downstream tasks (e.g., clustering, or classification)

etc.

Common idea: Control (or enforce) properties of (on) the latent representations in Z.

Encoder

Decoder

$g_\phi: Z \rightarrow \hat{x}$

$Rec[x, \hat{x}] + Reg$

Sparse AE's [Makhzani & Frey, ICLR ’14]
Q: What makes a good representation?

- Ability to reconstruct (→ prevalence of autoencoders)
- Robust to perturbations of the input
- Useful for downstream tasks (e.g., clustering, or classification)
- etc.

Common idea: Control (or enforce) properties of (or on) the latent representations in \mathcal{Z}.

Adversarial AE’s [Makhzani et al., ICLR ’16] (by far not exhaustive)

Encoder $f_\theta: \mathcal{X} \rightarrow \mathcal{Z}$

Latent space \mathcal{Z}

Decoder $g_\phi: \mathcal{Z} \rightarrow \mathcal{X}$

$x \rightarrow \hat{x} \rightarrow \text{Rec}[x, \hat{x}]$

Enforce distributional properties through **adversarial** training
Motivating (toy) example

We aim to control properties of the latent space, but from a **topological point of view**!
Motivating (toy) example

We aim to control properties of the latent space, but from a **topological point of view**!

Assume, we want to do **Kernel Density Estimation (KDE)** in the latent space \mathcal{Z}.

Data (z_i)

Gaussian KDE

Bandwidth selection: Scott’s rule [Scott, 1992]
We aim to control properties of the latent space, but from a **topological point of view**!

Assume, we want to do **Kernel Density Estimation (KDE)** in the latent space \mathcal{Z}.

Bandwidth selection: Scott’s rule [Scott, 1992]
Controlling connectivity

Q: How do we capture topological properties and what do we want to control?
Q: How do we **capture** topological properties and what do we want to control?

Vietoris Rips Persistent Homology (PH)

Radius $r = r_1$

Latent space \mathcal{Z}
Q: How do we capture topological properties and what do we want to control?

Vietoris Rips Persistent Homology (PH)

![Diagram](image)

Radius \(r = r_2 \)

Latent space \(\mathcal{Z} \)
Q: How do we capture topological properties and what do we want to control?

Vietoris Rips Persistent Homology (PH)

- PH tracks topological changes as the ball radius r increases.
- **Connectivity information** is captured by 0-dim. persistent homology.
Controlling connectivity

Q: How do we capture topological properties and what do we want to control?

Vietoris Rips Persistent Homology (PH)

- PH tracks topological changes as the ball radius r increases
- Connectivity information is captured by 0-dim. persistent homology

Homogeneous arrangement!

What if $z \mapsto f_\theta(z)$

Beneficial for KDE
Q: How can we control topological properties (connectivity properties in particular)?
Q: How can we control topological properties (connectivity properties in particular)?

Consider batches (x_1, \ldots, x_B)

$$f_\theta : \mathcal{X} \to \mathbb{R}^n$$

$$g_\phi : \mathbb{R}^n \to \mathcal{X}$$

$\hat{x} \xrightarrow{\text{Rec}[\cdot, \cdot]} \text{Connectivity loss}$
Q: How can we control topological properties (connectivity properties in particular)?

Consider batches (x_1, \ldots, x_B)

$f_\theta : \mathcal{X} \rightarrow \mathbb{R}^n$

$g_\phi : \mathbb{R}^n \rightarrow \mathcal{X}$

\hat{x}

Rec[\cdot, \cdot] + Connectivity loss

penalize deviation from homogeneous arrangement (with scale η)
Q: How can we **control** topological properties (connectivity properties in particular)?

Consider **batches** \((x_1, \ldots, x_B)\)

\[
f_\theta : \mathcal{X} \to \mathbb{R}^n
\]

\[
g_\phi : \mathbb{R}^n \to \mathcal{X}
\]

\[
\hat{x} \xrightarrow{\text{Rec}[\cdot, \cdot]} + \text{Connectivity loss}
\]

penalize deviation from **homogeneous arrangement** (with scale \(\eta\))

\[
\mathcal{L}_\eta
\]
Q: How can we control topological properties (connectivity properties in particular)?

Consider batches (x_1, \ldots, x_B)

$f_\theta : \mathcal{X} \rightarrow \mathbb{R}^n$

$g_\phi : \mathbb{R}^n \rightarrow \mathcal{X}$

$\hat{x} \rightarrow \text{Rec}[, ,] + \text{Connectivity loss}$

Until now, we could not backpropagate through PH

penalize deviation from homogeneous arrangement (with scale η)

L_η
From a **theoretical perspective**, we show . . .

(1) . . . that under mild conditions, the **connectivity loss is differentiable**
From a **theoretical perspective**, we show . . .

(1) . . . that under mild conditions, the **connectivity loss is differentiable**

(2) . . . metric-entropy based guidelines for choosing the training batch size B
From a **theoretical perspective**, we show . . .

(1) . . . that under mild conditions, the **connectivity loss** is **differentiable**

(2) . . . metric-entropy based guidelines for choosing the training batch size B

(3) . . . “densification” effects occur for samples, N, larger than the training batch size B
From a **theoretical perspective**, we show ...

\[x_1, \ldots, x_N \rightarrow \text{Enc} \rightarrow \text{Dec} \rightarrow \cdots + \text{Connectivity loss} \]

(1) ... that under mild conditions, the **connectivity loss is differentiable**

(2) ... metric-entropy based guidelines for choosing the training batch size \(B \)

(3) ... “densification” effects occur for samples, \(N \), larger than the training batch size \(B \)

Intuitively, during training ...

... the reconstruction loss controls **what** is worth capturing

... the **connectivity loss** controls **how** to topologically organize the latent space
Experiments – Task: One-class learning

Trained only once (e.g., on CIFAR-10 without labels)
Experiments – Task: One-class learning

Diagram:
- Auxiliary unlabeled data flows through f_θ and g_ϕ.
- g_ϕ outputs a connectivity loss (with fixed scale η) plus reconstruction loss $\text{Rec}[\cdot, \cdot]$.
- The system is trained only once (e.g., on CIFAR-10 without labels).

KDE-inspired **one-class** "learning":
- One-class samples are processed by f_θ.
- The output radius is $r = \eta/2$.

Equation:
$$r = \eta/2$$
Experiments – Task: One-class learning

Trained only once (e.g., on CIFAR-10 without labels)

KDE-inspired one-class "learning"

Count #samples falling into balls of radius η, anchored at the one-class instances

One-class samples

Computations of a one-class score

In-class

Out-of-class
Results – Task: One-class learning

CIFAR-10 (AE trained on CIFAR-100)

![Graph showing AUROC for various methods]

- **ADT** [Goland & El-Yaniv, NIPS ’18]
- **DAGMM** [Zong et al., ICLR ’18]
- **DSEBM** [Zhai et al., ICML ’16]
- **Deep-SVDD** [Ruff et al., ICML ’18]

Training batch size: $B = 100$
Results – Task: One-class learning

CIFAR-10 (AE trained on CIFAR-100)

<table>
<thead>
<tr>
<th>Method</th>
<th>AUROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSEBM</td>
<td>0.5</td>
</tr>
<tr>
<td>OC-SVM (CAE)</td>
<td>0.6</td>
</tr>
<tr>
<td>Deep-SVDD</td>
<td>0.7</td>
</tr>
<tr>
<td>ADT</td>
<td>0.8</td>
</tr>
<tr>
<td>Ours-120</td>
<td>0.8+7</td>
</tr>
<tr>
<td>ADT-100</td>
<td>0.7</td>
</tr>
<tr>
<td>ADT-500</td>
<td>0.6</td>
</tr>
<tr>
<td>ADT-120</td>
<td>0.5</td>
</tr>
<tr>
<td>Ours-120</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Low-sample size

ADT [Goland & El-Yaniv, NIPS ‘18]
DAGMM [Zong et al., ICLR ‘18]
DSEBM [Zhai et al., ICML ‘16]
Deep-SVDD [Ruff et al., ICML ‘18]

Training batch size: $B = 100$
Results – Task: One-class learning

CIFAR-20 (AE trained on CIFAR-10)

- **ADT** [Goland & El-Yaniv, NIPS ’18]
- **DAGMM** [Zong et al., ICLR ’18]
- **DSEBM** [Zhai et al., ICML ’16]
- **Deep-SVDD** [Ruff et al., ICML ’18]

Training batch size: $B = 100$
Results – Task: One-class learning

CIFAR-20 (AE trained on CIFAR-10)

ADT [Goland & El-Yaniv, NIPS ’18]
DAGMM [Zong et al., ICLR ’18]
DSEBM [Zhai et al., ICML ’16]
Deep-SVDD [Ruff et al., ICML ’18]

Training batch size: $B = 100$
Results – Task: One-class learning

CIFAR-100 (AE trained on CIFAR-10)

- ADT [Goland & El-Yaniv, NIPS ’18]
- DAGMM [Zong et al., ICLR ’18]
- DSEBM [Zhai et al., ICML ’16]
- Deep-SVDD [Ruff et al., ICML ’18]

Training batch size: \(B = 100 \)
Results – Task: One-class learning

ImageNet (i.e., evaluation of 1,000 one-class models)

![Graph showing AUROC for different models](image)

- **ADT** [Goland & El-Yaniv, NIPS ’18]
- **DAGMM** [Zong et al., ICLR ’18]
- **DSEBM** [Zhai et al., ICML ’16]
- **Deep-SVDD** [Ruff et al., ICML ’18]

Using **one** AE trained on CIFAR-10

Using **one** AE trained on CIFAR-100

Training batch size: \(B = 100 \)
Come see our poster
#83
at 6.30pm (Pacific Ballroom)

```
import torch
import chofer_torchex.pershom as pershom

batch = torch.randn(10,5, requires_grad=True)
batch = batch.to('cuda')

non_ess, ess = pershom.vr_persistence_l1(batch,0,0)

example_loss = non_ess[:,1].sum()
example_loss.backward()
```

https://github.com/c-hofer/COREL_icml2019