Our Goals

- **Targeted**
 Given an input audio x, a targeted transcription y, an automatic speech recognition system $f(\cdot)$, our target is to find a perturbation δ, that $f(x + \delta) = y$ and $f(x) \neq y$.

- **Imperceptible**
 Humans cannot differentiate x and $x + \delta$ when listening to these examples.

- **Robust**
 Played by a speaker and recorded by a microphone (over-the-air).
 (We don’t achieve this goal completely, but succeed at simulated rooms.)
Our Settings

- Threat Model
 White-box Attack

- ASR Model
 Lingvo ASR system (state-of-the-art) [1]

Imperceptibility

- Frequency Masking

A louder signal (the “masker”) can make other signals at nearby frequencies (the “maskees”) imperceptible.
Imperceptibility

- **Loss function** $\ell(x, \delta, y) = \ell_{net}(f(x + \delta), y) + \alpha \cdot \ell_\theta(x, \delta)$
 - $\ell_{net}(f(x + \delta), y)$ is the cross-entropy loss function;
 - $\ell_\theta(x, \delta) = \max\{\bar{p}_\delta(k) - \theta_x(k), 0\}$ is the imperceptibility loss

Where δ is the perturbation, $\bar{p}_\delta(k)$ is the psd of δ and $\theta_x(k)$ is the masking threshold.
Robustness

- Room Simulator
 - Simulate room impulse r based on room configurations
 - Convolve speech with reverberation $t(x) = x * r, \ t \sim T$

- Robustness Loss Function
 - Minimize $\ell(x, \delta, y) = E_{t \sim T} [\ell_{net}(f(t(x + \delta)), y)]$ such that $|\delta| < \epsilon$
Imperceptible and Robust Attacks

- **Combination Loss Function (imperceptibility & robustness)**

 Minimize $\ell(x, \delta, y) = E_{t \sim T} [\ell_{\text{net}}(f(t(x + \delta)), y)] + \alpha \cdot \ell_{\theta}(x, \delta)$

 - Robustness loss
 - Imperceptibility loss
Conclusions

- Construct *effectively imperceptible* adversarial examples using frequency masking.
- Develop robust adversarial examples that remain effective after playing over-the-air in the simulated rooms.
- Generate adversarial examples for non-ℓ_p-based metrics.
Thanks!
Come to our poster #65!

Project Webpage:
http://cseweb.ucsd.edu/~yaq007/imperceptible-robust-adv.html

Code:
https://github.com/tensorflow/cleverhans/tree/master/examples/adversarial_asr