Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen Elan Rosenfeld Zico Kolter

Carnegie Mellon University
Introduction

We study a **certified** adversarial defense in ℓ_2 norm which **scales** to ImageNet.

Background:
- Many adversarial defenses have been “broken”
- A **certified** defense (in ℓ_2 norm) is a classifier which returns *both* a prediction *and* a certificate that the prediction is constant within an ℓ_2 around the input.

Certify that every prediction inside this ball will be “panda.”

- Most certified defenses don’t scale to networks of realistic size.
Prior work on randomized smoothing

- Randomized smoothing was proposed as a certified defense by [1]
- The analysis was improved upon by [2]
- Our main contribution is the tight analysis of this algorithm

Randomized smoothing

• First, train a neural net f (the “base classifier”) with Gaussian data augmentation:

• Then, smooth f into a new classifier g (the “smoothed classifier”), defined as follows:
Randomized smoothing

\[g(x) = \text{the most probable prediction by } f \text{ of random Gaussian corruptions of } x \]

Example: consider the input \(x = \) 🐼

Suppose that when \(f \) classifies \(\mathcal{N}(x, \sigma^2 I) \),

- 🐼 is returned with probability 0.80
- 🐼 is returned with probability 0.15
- 🐯 is returned with probability 0.05

Then \(g(x) = 🐼 \)
Randomized smoothing

\[g(x) = \text{the most probable prediction by } f \text{ of random Gaussian corruptions of } x \]

Example: consider the input \(x = \) 🐼

Suppose that when \(f \) classifies \(N(x, \sigma^2 I) \),
- 🐻 is returned with probability 0.80
- 🦊 is returned with probability 0.15
- 🐈 is returned with probability 0.05

Then \(g(x) = 🐻 \)
Randomized smoothing

\(g(x) = \) the most probable prediction by \(f \) of random Gaussian corruptions of \(x \)

Example: consider the input \(x = \) —

Suppose that when \(f \) classifies \(\mathcal{N}(x, \sigma^2 I) \),

- is returned with probability 0.80
- is returned with probability 0.15
- is returned with probability 0.05

Then \(g(x) = \) —
Class probabilities vary slowly

If we shift this Gaussian, the probabilities of each class can’t change by too much.

Therefore, if we know the class probabilities at the input x, we can certify that for sufficiently small perturbations of x, the \mathbb{P} probability will remain higher than the \mathbb{P} probability.
Robustness guarantee (main result)

• Let p_A be the probability of the top class.
• Let p_B be the probability of the runner-up class.
• Then g provably returns the top class within an ℓ_2 ball around x of radius
 \[R = \frac{\sigma}{2} (\Phi^{-1}(p_A) - \Phi^{-1}(p_B)) \]
where Φ^{-1} is the inverse standard Gaussian CDF.
There’s one catch

• When \(f \) is a neural network, it’s not possible to exactly
 - evaluate the smoothed classifier
 - certify the robustness of the smoothed classifier

• However, by sampling the prediction of \(f \) under Gaussian noise, you can
 obtain answers guaranteed to be correct with arbitrarily high probability
ImageNet performance

Note: the certified radii are much smaller than this noise.
Thanks for listening!

Poster #64, 6:30 PM – 9:00 PM tonight

Code and trained models:
http://github.com/locuslab/smoothering