Gradient Descent Finds Global Minima of Deep Neural Networks

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, Xiyu Zhai
Empirical Observations on Empirical Risk

• Zhang et al, 2017, Understanding Deep Learning Requires Rethinking Generalization.

Randomization Test: replace true labels by random labels.
Observations: Empirical Risk→ 0 for both true labels and random labels.
Conjecture: because neural networks are over-parameterized.
Open Problem: why gradient descent can find a neural network that fits all labels.
Setup

• Training Data: \(\{ x_i, y_i \}_{i=1}^{n} \), \(x_i \in \mathbb{R}^d \), \(y_i \in \mathbb{R} \)

• A Model.
 • Fully connected neural network:
 \[
 f(\theta, x) = W_L \sigma(W_{L-1} \cdots W_2 \sigma(W_1 x) \cdots)
 \]

• A loss function.
 • Quadratic loss:
 \[
 R(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (f(\theta, x_i) - y_i)^2
 \]

• An optimization algorithm:
 • Gradient descent:
 \[
 \theta(t+1) \leftarrow \theta(t) - \eta \frac{\partial R(\theta(t))}{\partial \theta(t)}
 \]
Trajectory-based Analysis

\[\theta(t + 1) \leftarrow \theta(t) - \eta \frac{\partial R(\theta(t))}{\partial \theta(t)} \]

- Trajectory of parameters:
 \[\theta(0), \theta(1), \theta(2), \ldots \]

- Predictions:
 \[u_i(t) \triangleq f(\theta(t), x_i), u(t) \triangleq (u_1(t), \ldots, u_n(t))^\top \in \mathbb{R}^n \]

- Trajectory of predictions:
 \[u(0), u(1), u(2), \ldots \]
Proof Sketch

• Simplified form (continuous time):
\[
\frac{du(t)}{dt} = - \sum_{\ell=1}^{L} H^\ell(t) (y - u(t)) \quad H^\ell_{ij}(t) = \frac{1}{n} \langle \frac{\partial u_i(t)}{\partial W_{\ell}(t)}, \frac{\partial u_j(t)}{\partial W_{\ell}(t)} \rangle
\]

• Random initialization + concentration + perturbation analysis:
\[
\lim_{m \to \infty} \sum_{\ell=1}^{L} H^\ell(0) \to H^\infty \quad \text{and} \quad \lim_{m \to \infty} \sum_{\ell=1}^{L} H^\ell(t) \to \sum_{\ell=1}^{L} H^\ell(0) \quad \forall t \geq 0
\]

• Linear ODE theory:
\[
\|u(t) - y\|_2^2 \leq \exp (-\lambda_0 t) \|u(0) - y\|_2^2, \quad \lambda_0 = \lambda_{\min} (H^\infty)
\]
Main Results

Theorem 1: For fully-connected neural network with smooth activation, if $m = \text{poly}(n, 2^L, 1/\lambda_0)$ and step size $\eta = O\left(\frac{\lambda_0}{n^2 2^{\Omega(L)}}\right)$, then with high probability over random initialization we have: for $t = 1, 2, ...$

\[R(\theta(t)) \leq (1 - \eta \lambda_0)^t R(\theta(0)). \]

- First global linear convergence guarantee for deep NN.
- Exponential dependence due to error propagation.
Main Results (Cont’d)

Theorem 2: For ResNet or Convolutional ResNet with smooth activation, if $m = \text{poly}(n, L, 1/\lambda_0)$ and step size $\eta = O\left(\frac{\lambda_0}{n^2}\right)$, then with high probability over random initialization we have: for $t = 1, 2, \ldots$

$$R(\theta(t)) \leq (1 - \eta \lambda_0)^t R(\theta(0)).$$

• ResNet architecture makes the error propagation more stable \Rightarrow exponential improvement over fully-connected neural networks.
Learn more @ Pacific Ball Room #80