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Encompasses Many Fields

Recommender Systems

Inverse reinforcement learning

Virtual Assistants

Structural Modeling



Independence of Irrelevant 

Alternatives (IIA)
 Fully determines the workhorse Multinomial Logit (MNL) Model

 Main (strong) assumption:

 The Good: 

 inferentially tractable, powerful, and interpretable

 The Bad: 

 When IIA does not hold, out of sample predictions are wildly 
miscalibrated

 Cannot account for the wide literature on context effects (e.g. 
Compromise Effect)
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Problems we address

 Modelling individual choice behavior

 Behavioral economics “anomalies” are all over the place

 Search Engine Ads (Ieong-Mishra-Sheffet ’12, Yin et al. ’14)

 Google Web Browsing Choices (Benson-Kumar-Tomkins ’16)

 Need to model while retaining parametric and inferential efficiency

 Statistical tests for violations of IIA

 General, global tests are intractable (Seshadri & Ugander ‘19, Long & Freese ‘05)

 Model based approaches challenging due to identifiability issues (Cheng & Long, 
‘07) 

“ad group quality”
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Identifiability

Sufficient:

Necessary:

More generally:

Convergence GuaranteesHypothesis Testing
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Unifying Existing Choice Models

Tversky-Simonson Model

Low Rank CDM

Blade-Chest Model

Batsell-Polking Model

(Tversky & Simonson, 1993)

(Batsell & Polking, 1985)

(Chen & Joachims, 2016)
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An Empirical Preview: Performance 

and Interpretability
 Not Like the Other (Heikinheimo & Ukkonen, ‘13)

 Individuals are shown triplets of nature photographs 

 asked to choose photo most unlike the other two

 CDM illustrates intuitive property of dataset: similar items 
have negative target-context inner product

 Induces grouping by similarity in both target and 
context vectors

 Transportation Preferences (Koppelman & Bhat, ‘06)

 Survey of transportation choices for residents in 
various San Francisco neighborhoods

 Low Rank CDMs significantly outperform MNL 
and MMNL



Conclusions

 CDM models context effects with efficiency guarantees and enables 

practical tests of IIA

 Can be easily applied to many pipelines by modifying “the final layer”

 Simultaneously brings both:

 Machine Learning rigor to Econometrics models (identifiability, convergence)

 Econometrics modeling (choice set effects) into Machine Learning research

Thanks!!
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