Graph Resistance and Learning from Pairwise Comparisons

Alex Olshevsky

Department of ECE, Boston University

Joint work with Julien Hendrickx (UC Louvain) and Venkatesh Saligrama (BU)
• Given a collection of items with unknown qualities w_1, \ldots, w_n, we want to compute $w = (w_1, \ldots, w_n)$ up to scaling from pairwise comparisons of items.
• Given a collection of items with unknown qualities w_1, \ldots, w_n, we want to compute $w = (w_1, \ldots, w_n)$ up to scaling from pairwise comparisons of items.

• In many contexts, comparisons are the right way to model the available data:
Problem Statement

- Given a collection of items with unknown qualities \(w_1, \ldots, w_n \), we want to compute \(w = (w_1, \ldots, w_n) \) up to scaling from *pairwise* comparisons of items.

- In many contexts, comparisons are the right way to model the available data:
 - A patient compares how painful or helpful two treatments have been.
• Given a collection of items with unknown qualities w_1, \ldots, w_n, we want to compute $w = (w_1, \ldots, w_n)$ up to scaling from pairwise comparisons of items.

• In many contexts, comparisons are the right way to model the available data:
 • A patient compares how painful or helpful two treatments have been.
 • A customer purchases one of several items recommended by an e-commerce site.
Problem Statement

• Given a collection of items with unknown qualities w_1, \ldots, w_n, we want to compute $w = (w_1, \ldots, w_n)$ up to scaling from pairwise comparisons of items.

• In many contexts, comparisons are the right way to model the available data:

 • A patient compares how painful or helpful two treatments have been.
 • A customer purchases one of several items recommended by an e-commerce site.
 • A user clicks on one of the items suggested by a search engine.
Problem Statement

• Given a collection of items with unknown qualities w_1, \ldots, w_n, we want to compute $w = (w_1, \ldots, w_n)$ up to scaling from pairwise comparisons of items.

• In many contexts, comparisons are the right way to model the available data:
 • A patient compares how painful or helpful two treatments have been.
 • A customer purchases one of several items recommended by an e-commerce site.
 • A user clicks on one of the items suggested by a search engine.
 • A user chooses one of several movies recommended by a streaming site.
The Simplest Possible Model: BTL over a graph

- Items are compared according to the Bradley-Terry-Luce (BTL) model: probability that item i wins against item j is

$$\frac{w_i}{w_i + w_j}$$
• Items are compared according to the Bradley-Terry-Luce (BTL) model: probability that item i wins against item j is

$$\frac{w_i}{w_i + w_j}$$

• There are a number of models for item comparisons, and the BTL model is arguably the simplest.
The Simplest Possible Model: BTL over a graph

- Items are compared according to the Bradley-Terry-Luce (BTL) model: probability that item i wins against item j is

$$\frac{w_i}{w_i + w_j}$$

- There are a number of models for item comparisons, and the BTL model is arguably the simplest.

- We assume that there is an underlying “comparison graph” G and if (i,j) is an edge in this graph, items i and j are compared k times.
• Items are compared according to the Bradley-Terry-Luce (BTL) model: probability that item i wins against item j is

$$\frac{w_i}{w_i + w_j}$$

• There are a number of models for item comparisons, and the BTL model is arguably the simplest.

• We assume that there is an underlying “comparison graph” G and if (i,j) is an edge in this graph, items i and j are compared k times.

• We do not choose the comparison graph.
The Simplest Possible Model: BTL over a graph

- Items are compared according to the Bradley-Terry-Luce (BTL) model: probability that item i wins against item j is
 \[\frac{w_i}{w_i + w_j} \]

- There are a number of models for item comparisons, and the BTL model is arguably the simplest.

- We assume that there is an underlying “comparison graph” G and if (i, j) is an edge in this graph, items i and j are compared k times.

- We do not choose the comparison graph.

- Goal: understand how fast the error decays with k and G.
• Each edge label represents the outcomes of noisy comparisons.
• Need to compute (scaled versions of) w_1, w_2, w_3, w_4 from these measurements.
• The dominant approach has been to construct a Markov chain based on the data whose stationary distribution is an estimate of the true weights.
Previous Work – I

• The dominant approach has been to construct a Markov chain based on the data whose stationary distribution is an estimate of the true weights.

• First proposed by [Dwork, Kumar, Naor, Sivakumar, WWW 2001] and first analyzed [Neghaban, Oh, Shah, NeurIPS 2012]. Under the assumption

\[
\max_{i,j} \frac{w_i}{w_j} \leq b,
\]

the estimate \(\hat{W}\) satisfies

\[
\left\| \frac{w}{\|w\|_1} - \hat{W} \right\|_2^2 \leq O \left(\frac{1}{k} \right) \frac{b^5 \log n}{\chi_2^2} \frac{d_{\max}}{d_{\min}^2},
\]
• The dominant approach has been to construct a Markov chain based on the data whose stationary distribution is an estimate of the true weights.

• First proposed by [Dwork, Kumar, Naor, Sivakumar, WWW 2001] and first analyzed [Neghaban, Oh, Shah, NeurIPS 2012]. Under the assumption

\[
\max_{i,j} \frac{w_i}{w_j} \leq b,
\]

the estimate \(\hat{W} \) satisfies

\[
\frac{\left\| \frac{w}{\|w\|_1} - \hat{W} \right\|_2^2}{\left\| \frac{w}{\|w\|_1} \right\|_2^2} \leq O \left(\frac{1}{k} \right) \frac{b^5 \log n}{\chi_2^2} \frac{d_{\text{max}}}{d_{\text{min}}},
\]

• Worst case scaling is \(O(n^7/k) \).
Previous Work – I

• The dominant approach has been to construct a Markov chain based on the data whose stationary distribution is an estimate of the true weights.

• First proposed by [Dwork, Kumar, Naor, Sivakumar, WWW 2001] and first analyzed [Neghaban, Oh, Shah, NeurIPS 2012]. Under the assumption

$$\max_{i,j} \frac{w_i}{w_j} \leq b,$$

the estimate \hat{W} satisfies

$$\frac{\left\| \frac{w}{\|w\|_1} - \hat{W} \right\|_2^2}{\left\| \frac{w}{\|w\|_1} \right\|_2^2} \leq O \left(\frac{1}{k} \right) \frac{b^5 \log n}{\lambda_2^2} \frac{d_{\max}}{d_{\min}^2},$$

• Worst case scaling is $O(n^7/k)$.

• Scaling with degrees recently improved by [Agarwal, Patil, Agarwal, ICML 2018].
• Computing the maximum likelihood estimator (which can be done in polynomial time) was considered in [Shah, Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright, JMLR 16].
Previous Work and Motivation

• Computing the maximum likelihood estimator (which can be done in polynomial time) was considered in [Shah, Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright, JMLR 16].

• The error bound was

$$O_b \left(\frac{1}{m} \right) \frac{n}{\lambda_2(L)} \geq E \left[\left\| \hat{W} - \log w \right\|_2^2 \right] \geq \Omega_b \left(\frac{1}{m} \right) \max \left(n^2, \max_{l=2, \ldots, n} \sum_{i=\lceil 0.99/l \rceil}^{l} \frac{1}{\lambda_i(L)} \right)$$

after \(m \) samples, where \(L \) is the Laplacian of the comparison graph, and \(O_b(\cdot), \Omega_b(\cdot) \) denotes that the constant within the \(O(\cdot) \) notation depends on \(b \).
Previous Work and Motivation

- Computing the maximum likelihood estimator (which can be done in polynomial time) was considered in [Shah, Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright, JMLR 16].

- The error bound was

\[O_b \left(\frac{1}{m} \right) \frac{n}{\lambda_2(L)} \geq E \left[\left\| \hat{W} - \log w \right\|_2^2 \right] \geq \Omega_b \left(\frac{1}{m} \right) \max \left(n^2, \max_{l=2,\ldots,n} \sum_{i=[0.99l]}^l \frac{1}{\lambda_i(L)} \right) \]

after \(m \) samples, where \(L \) is the Laplacian of the comparison graph, and \(O_b(\cdot), \Omega_b(\cdot) \) denotes that the constant within the \(O(\cdot) \) notation depends on \(b \).

- Our concern I: we want matching upper and lower bounds.
Computing the maximum likelihood estimator (which can be done in polynomial time) was considered in [Shah, Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright, JMLR 16].

The error bound was

\[
O_b \left(\frac{1}{m} \right) \frac{n}{\lambda_2(L)} \geq E \left[\left\| \hat{W} - \log w \right\|^2 \right] \geq \Omega_b \left(\frac{1}{m} \right) \max \left(n^2, \max_{l=2,\ldots,n} \sum_{i=\lceil 0.99l \rceil}^{\lceil 0.99l \rceil} \frac{1}{\lambda_i(L)} \right)
\]

after \(m \) samples, where \(L \) is the Laplacian of the comparison graph, and \(O_b(\cdot), \Omega_b(\cdot) \) denotes that the constant within the \(O(\cdot) \) notation depends on \(b \).

Our concern I: we want matching upper and lower bounds.

Our concern II: what is the relevant graph-theoretic quantity?
Our results - I

- We give satisfactory answers to these concerns but only when k is large.

- The standard way to measure the distance between subspaces is through a sine of the angle:

$$|\sin(\theta_{\mathbf{W};\mathbf{w}})| = \inf_{\mathbf{v}} \frac{\|\mathbf{W}\mathbf{v}\|_2}{\|\mathbf{w}\|_2}$$

This same as measures considered above up to factors of b.

- First main result: we give a method such that when $k \Omega(j_{E} \log_2(n \approx))$, then with probability 1,

$$\sin^2(\theta_{\mathbf{W};\mathbf{w}}) = O\left(\frac{b^2 R_{\text{max}}(1 + \log(1 + 1))}{k} \right)$$

$$\sin^2(\theta_{\mathbf{W};\mathbf{w}}) = O\left(\frac{b^4 R_{\text{avg}}(1 + \log(1 + 1))}{k} \right)$$

where R_{max}, R_{avg} are, respectively, the maximum and average resistance of the comparison graph.
Our results - I

• We give satisfactory answers to these concerns but only when k is large.

• The standard way to measure the distance between subspaces is through a sine of the angle:

$$| \sin(\hat{W}, w)| = \inf_{\alpha} \frac{||\alpha \hat{W} - w||_2}{||W||_2}.$$

This same as measures considered above up to factors of b.
Our results - I

• We give satisfactory answers to these concerns but only when k is large.
• The standard way to measure the distance between subspaces is through a sine of the angle:

$$|\sin(\hat{W}, w)| = \inf_{\alpha} \frac{|\alpha \hat{W} - w||}{||w||}.$$

This same as measures considered above up to factors of b.

• First main result: we give a method such that when $k \geq \Omega\left(|E| \log^2(n/\delta)\right)$, then with probability $1 - \delta$,

$$\sin^2(\hat{W}, w) = O\left(\frac{b^2 R_{\text{max}}(1 + \log(1/\delta))}{k} \right)$$

$$\sin^2(\hat{W}, w) = O\left(\frac{b^4 R_{\text{avg}}(1 + \log(1/\delta))}{k} \right),$$

where $R_{\text{max}}, R_{\text{avg}}$ are, respectively, the maximum and average resistance of the comparison graph.
Our results - II

• Second main result: when \(k \geq \sqrt{d_{\text{max}}} n R_{\text{avg}}, \)

\[
E \left[\sin^2 (\hat{W}, w) \right] \geq \frac{R_{\text{avg}}}{k}.
\]

• Punchline: the relevant graph-theoretic quantity is the graph resistance.

• Worst-case for \(\sin^2 (\hat{W}, w) \) (or other notions of squared distance) is actually \(O \left(\frac{n}{k} \right) \) when \(b = O \left(\frac{1}{k} \right) \).
• Second main result: when $k \geq \sqrt{d_{\text{max}}} n R_{\text{avg}}$,

$$E \left[\sin^2(\hat{W}, w) \right] \geq \frac{R_{\text{avg}}}{k}.$$

• Punchline: the relevant graph-theoretic quantity is the graph resistance.
Our results - II

• Second main result: when $k \geq \sqrt{d_{\text{max}}nR_{\text{avg}}}$,

$$E \left[\sin^2(\hat{W}, w) \right] \geq \frac{R_{\text{avg}}}{k}.$$

• Punchline: the relevant graph-theoretic quantity is the graph resistance.

• Worst-case for $\sin^2(\hat{W}, w)$ (or other notions of squared distance) is actually $O(n/k)$ when $b = O(1)$.
Our method

- We do the simplest possible thing.
Our method

• We do the simplest possible thing.

• On edge \((i, j)\) let \(F_{ij}\) be the fraction of times \(i\) wins against \(j\).
Our method

• We do the simplest possible thing.

• On edge \((i, j)\) let \(F_{ij}\) be the fraction of times \(i\) wins against \(j\).

• Observe that

\[
\frac{E[F_{ij}]}{E[F_{ji}]} = \frac{w_i/(w_i + w_j)}{w_j/(w_i + w_j)} = \frac{w_i}{w_j}
\]
Our method

- We do the simplest possible thing.
- On edge \((i,j)\) let \(F_{ij}\) be the fraction of times \(i\) wins against \(j\).
- Observe that
 \[
 \frac{E[F_{ij}]}{E[F_{ji}]} = \frac{w_i/(w_i + w_j)}{w_j/(w_i + w_j)} = \frac{w_i}{w_j}
 \]
- Our approach: solve the linear system of equations
 \[
 \log \frac{F_{ij}}{F_{ji}} = z_i - z_j,
 \]
 in the least-square sense, and set \(\hat{W}_i = e^{z_i}\).
Our method

• We do the simplest possible thing.

• On edge \((i,j)\) let \(F_{ij}\) be the fraction of times \(i\) wins against \(j\).

• Observe that

\[
\frac{E[F_{ij}]}{E[F_{ji}]} = \frac{w_i/(w_i + w_j)}{w_j/(w_i + w_j)} = \frac{w_i}{w_j}
\]

• Our approach: solve the linear system of equations

\[
\log \frac{F_{ij}}{F_{ji}} = z_i - z_j,
\]

in the least-square sense, and set \(\hat{W}_i = e^{z_i}\).

• Can be done in nearly linear time due to work by [Spielman, Teng, 2004].
Why Resistance? The upper bound

- As a toy example, imagine that the comparison graph is a line.
Why Resistance? The upper bound

- As a toy example, imagine that the comparison graph is a line.
- Our method learns something about the ratios $w_1/w_2, w_2/w_3, \ldots, w_{n-1}/w_n$. The squared error in estimating each of these will decay like $1/k$.
Why Resistance? The upper bound

• As a toy example, imagine that the comparison graph is a line.
• Our method learns something about the ratios $w_1/w_2, w_2/w_3, \ldots, w_{n-1}/w_n$. The squared error in estimating each of these will decay like $1/k$.

• Relative errors multiply, e.g.

$$\frac{w_3}{w_1} = \frac{w_2}{w_1} \frac{w_3}{w_2},$$

so if the two quantities on the right are known to some error, those errors will multiply.
Why Resistance? The upper bound

- As a toy example, imagine that the comparison graph is a line.
- Our method learns something about the ratios \(w_1/w_2, w_2/w_3, \ldots, w_{n-1}/w_n \). The squared error in estimating each of these will decay like \(1/k \).
- Relative errors multiply, e.g.
 \[
 \frac{w_3}{w_1} = \frac{w_2}{w_1} \frac{w_3}{w_2},
 \]
 so if the two quantities on the right are known to some error, those errors will multiply.
- But \((1 + \epsilon)^n \approx 1 + n\epsilon\) when errors are small, the total squared error will scale linearly with \(n\).
Why Resistance? The upper bound

• As a toy example, imagine that the comparison graph is a line.
• Our method learns something about the ratios \(w_1/w_2, w_2/w_3, \ldots, w_{n-1}/w_n \). The squared error in estimating each of these will decay like \(1/k \).
• Relative errors multiply, e.g.
\[
\frac{w_3}{w_1} = \frac{w_2}{w_1} \frac{w_3}{w_2},
\]
so if the two quantities on the right are known to some error, those errors will multiply.
• But \((1 + \epsilon)^n \approx 1 + n\epsilon \) when errors are small, the total squared error will scale linearly with \(n \).
• Now imagine an arbitrary graph. Now for any two nodes \(i \) and \(j \), we can think about the error over all paths from \(i \) to \(j \).
Why Resistance? The upper bound

• As a toy example, imagine that the comparison graph is a line.
• Our method learns something about the ratios $w_1/w_2, w_2/w_3, \ldots, w_{n-1}/w_n$. The squared error in estimating each of these will decay like $1/k$.
• Relative errors multiply, e.g.

$$\frac{w_3}{w_1} = \frac{w_2}{w_1} \frac{w_3}{w_2},$$

so if the two quantities on the right are known to some error, those errors will multiply.
• But $(1 + \epsilon)^n \approx 1 + n\epsilon$ when errors are small, the total squared error will scale linearly with n.
• Now imagine an arbitrary graph. Now for any two nodes i and j, we can think about the error over all paths from i to j.
• Error for each path will scale with length but will decreases when you get to average more paths.
Why Resistance? The upper bound

• As a toy example, imagine that the comparison graph is a line.
• Our method learns something about the ratios $w_1/w_2, w_2/w_3, \ldots, w_{n-1}/w_n$. The squared error in estimating each of these will decay like $1/k$.
• Relative errors multiply, e.g.

$$\frac{w_3}{w_1} = \frac{w_2}{w_1} \frac{w_3}{w_2},$$

so if the two quantities on the right are known to some error, those errors will multiply.
• But $(1 + \epsilon)^n \approx 1 + n\epsilon$ when errors are small, the total squared error will scale linearly with n.
• Now imagine an arbitrary graph. Now for any two nodes i and j, we can think about the error over all paths from i to j.
• Error for each path will scale with length but will decreases when you get to average more paths.
• Clear parallel to resistance.
Why Resistance? The lower bound

- What sort of argument might yield a lower bound of resistance?

\[R_{\text{avg}} = \text{Tr}(L) \]

where \(L \) is the graph Laplacian and \(L_{\text{inv}} \) is the Moore-Penrose pseudoinverse.

One can prove a lower bound by exhibiting \(w_1 \neq w_2 \) and demonstrating that the expected (total variation) distance between the two distributions on \(k \) outcomes is small.
Why Resistance? The lower bound

- What sort of argument might yield a lower bound of resistance?

- There is a natural way resistance comes up:

 \[R_{\text{avg}} = \frac{\text{Tr}(L^\dagger)}{n}, \]

 where \(L \) is the graph Laplacian and \(L^\dagger \) is the Moore-Penrose pseudoinverse.
Why Resistance? The lower bound

• What sort of argument might yield a lower bound of resistance?

• There is a natural way resistance comes up:

\[R_{\text{avg}} = \frac{\text{Tr}(L^\dagger)}{n}, \]

where \(L \) is the graph Laplacian and \(L^\dagger \) is the Moore-Penrose pseudoinverse.

• One can prove a lower bound by exhibiting \(w_1 \neq w_2 \) and demonstrating that the expected (total variation) distance between the two distributions on \(k|E| \) outcomes is small.
why resistance? the lower bound - ii

• choose

\[w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} + \frac{1}{\sqrt{k}} \sum_{i=2}^{n} Z_i \frac{v_i}{\sqrt{\lambda_i}}, \]

where \(v_i \) are the eigenvectors the Laplacian of the comparison graph (normalized so that \(\|v\|_2 = 1 \)), with \(\lambda_i \) the corresponding eigenvalues, and \(Z_i \in \{-1, 1\} \) is a Bernoulli random variable.
Why Resistance? The lower bound - II

• Choose

\[w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} + \frac{1}{\sqrt{k}} \sum_{i=2}^{n} Z_i \frac{v_i}{\sqrt{\lambda_i}}, \]

where \(v_i \) are the eigenvectors the Laplacian of the comparison graph (normalized so that \(\|v\|_2 = 1 \)), with \(\lambda_i \) the corresponding eigenvalues, and \(Z_i \in \{-1, 1\} \) is a Bernoulli random variable.

• Suppose the error in estimating each \(Z_i \) is \(C \), i.e., for any \(\hat{Z}_i \), the error in estimating \(Z_i \) satisfies

\[E \left[\left(\hat{Z}_i - Z_i \right)^2 \right] \geq C \]

Then for any \(\hat{W} \),

\[E \frac{\|\hat{W} - w\|_2^2}{\|w\|_2^2} \geq C \frac{(1/k) \sum_{i=2}^{n} 1/\lambda_i}{n} = \Omega \left(C \frac{\text{Tr}(L^\dagger)}{n} \right) = \Omega \left(CR_{\text{avg}} \right) \]
Why Resistance? The lower bound - II

• Choose

\[w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} + \frac{1}{\sqrt{k}} \sum_{i=2}^{n} Z_i \frac{v_i}{\sqrt{\lambda_i}}, \]

where \(v_i \) are the eigenvectors the Laplacian of the comparison graph (normalized so that \(\|v\|_2 = 1 \)), with \(\lambda_i \) the corresponding eigenvalues, and \(Z_i \in \{-1, 1\} \) is a Bernoulli random variable.

• Suppose the error in estimating each \(Z_i \) is \(C \), i.e., for any \(\hat{Z}_i \), the error in estimating \(Z_i \) satisfies

\[E \left[\left(\hat{Z}_i - Z_i \right)^2 \right] \geq C \]

Then for any \(\hat{W} \),

\[E \frac{\|\hat{W} - w\|_2^2}{\|w\|_2^2} \geq \frac{C(1/k) \sum_{i=2}^{n} 1/\lambda_i}{n} = \Omega \left(\frac{C \text{Tr}(L^\dagger)}{n} \right) = \Omega (CR_{\text{avg}}) \]

• Key lemma: \(C \) is constant.
The following figures show, respectively, evolution on the 2D grid (left, where resistances grows as $O(\log n)$) and 3D grid (right, where resistance is constant).
Our results prove that the squared error decay is \(O(R_{\text{avg}}/k) \) for \(k \) large enough. Simulations show that this actually seems to be true for all \(k \).
Conclusion and Future Work

• Our results prove that the squared error decay is $O(R_{\text{avg}}/k)$ for k large enough. Simulations show that this actually seems to be true for all k.

• Conjecture: R_{avg} is also the sample complexity of learning in the Bradley-Terry-Luce model.
• Our results prove that the squared error decay is $O(R_{\text{avg}}/k)$ for k large enough. Simulations show that this actually seems to be true for all k.

• Conjecture: R_{avg} is also the sample complexity of learning in the Bradley-Terry-Luce model.

• Simulations show that our method performs similarly to Markov chain methods, suggesting that resistance is the right scaling for those methods as well.
Conclusion and Future Work

• Our results prove that the squared error decay is $O(R_{avg}/k)$ for k large enough. Simulations show that this actually seems to be true for all k.

• Conjecture: R_{avg} is also the sample complexity of learning in the Bradley-Terry-Luce model.

• Simulations show that our method performs similarly to Markov chain methods, suggesting that resistance is the right scaling for those methods as well.

• Getting the correct scaling is still open, as the upper and lower bounds do not match in factors of b as well as in the gap between maximum and average resistance.