Mallows ranking models: maximum likelihood estimate and regeneration

Wenpin Tang Department of Mathematics, UCLA

June 14, 2019

▲ □ > < □ >

Wenpin Tang Department of Mathematics, UCLA

Background

Ranked data appear in many problems of *social choice*, *user recommendation*, *information retrieval*...

Examples :

- ranking candidates by voters in political elections;
- preference list of competing items collected from consumers;
- document retrieval by aggregating a ranked list of webpages output by various search algorithms.

Wenpin Tang Department of Mathematics, UCLA

Mathematical models

Ranking = Permutation. Given *n* items, a ranking $\pi \in \mathfrak{S}_n$ is described by

- word list : $(\pi(1), \pi(2), ..., \pi(n)),$
- ranked list : $(\pi^{-1}(1)|\pi^{-1}(2)|...|\pi^{-1}(n))$.

 $\pi(i) = j$: the item *i* has rank *j*, and $\pi^{-1}(j) = i$: the *j*th most preferred is item *i*.

Mallows model :

$$\mathbb{P}_{\theta,\pi_0,d}(\pi) \propto \boldsymbol{e}^{- heta d(\pi,\pi_0)} \quad ext{for } \pi \in \mathfrak{S}_n,$$

- $\theta > 0$ is the *dispersion parameter*,
- π_0 is the *central ranking*,
- $d(\cdot, \cdot)$ is a discrepancy function which is right invariant :

$$d(\pi, \sigma) = d(\pi \circ \sigma^{-1}, id)$$
 for $\pi, \sigma \in \mathfrak{S}_n$.

Mallows model

Diaconis' list of $d(\cdot, \cdot)$:

- Mallows' θ model : $d(\pi, \sigma) = \sum_{i=1}^{n} (\pi(i) \sigma(i))^2$ is the Spearman's rho,
- Mallows' φ model: d(π, σ) = inv(π ∘ σ⁻¹) is the Kendall's tau...

Mallows' ϕ model is more interesting, since it is an instance of two large models, Fligner and Verducci ('86, '88) :

- distance-based ranking models,
- multistage ranking models.

Correctness measure : inversion table $(s_j(\pi))_{1 \le j \le n-1}$

$$s_j(\pi) := \pi^{-1}(j) - 1 - \sum_{j' < j} \mathbf{1}_{\{\pi^{-1}(j') < \pi^{-1}(j)\}}.$$

$$\mathbb{P}_{\pi_0,\theta} \propto \prod_{j=1}^n \exp(-\theta \, s_j(\pi \circ \pi_0^{-1})).$$

- MLE $\hat{\theta}$: easy by convex optimization.
- MLE $\hat{\pi}_0$: Kemeny's consensus ranking problem

$$\widehat{\pi}_0 := \operatorname{argmin}_{\pi_0} \sum_{i=1}^N \operatorname{inv}(\pi_i \circ \pi_0^{-1}).$$

This problem is **NP-hard**, with a few heuristic algorithms.

Theoretical properties of $\hat{\theta}$, $\hat{\pi}_0$:

- Are the MLEs $\hat{\theta}$, $\hat{\pi}_0$ consistent?
- 2 Is the MLE $\hat{\theta}$ unbiased?
- **Oracle Sector** How fast do MLEs $\hat{\pi}_0$ converge to π_0 ?

Not well studied, only Mukherjee ('16) considered $\hat{\theta}$.

Theorem

Let $\widehat{\theta}$, $\widehat{\pi}_0$ be the MLE of θ , π_0 with N samples. $\mathbb{E}_{\theta,\pi_0}\widehat{\theta} > \theta.$ $\sqrt{\frac{2}{\pi N}} \left(\cosh \frac{\theta}{2}\right)^{-N} \leq \mathbb{P}_{\theta,\pi_0}(\widehat{\pi}_0 \neq \pi_0) \leq (n - H_n)n! \left(\cosh \frac{\theta}{2}\right)^{-N}.$

Hint : For $\pi \sim$ Mallows' ϕ , inv (π) is decomposed as independent *truncated geometric variables*. Then apply LDP bounds.

イロト イ団ト イヨト イヨト 二臣

Infinite Mallows models

Motivation : Tackle the problem of ranking a large number items \rightarrow infinite ranking/permutation models.

$$\mathbb{P}_{ heta,\pi_0}(\pi) \propto \exp\left(- heta \sum_{j=1}^t s_j(\pi\circ\pi_0^{-1})
ight),$$

regarded as a *t*-marginal of random permutation of \mathbb{N}_+ .

Theory : Pitman and Tang *Regenerative random permutations of integers*, AoP ('19)

 \longrightarrow Infinite Mallows model enjoys the regenerative property : it is a concatenation of i.i.d. indecomposable blocks

$$(\underbrace{2, 3, 4, 1}_{L_1=4}, \underbrace{6, 8, 7, 10, 5, 9}_{L_2=6}, \underbrace{12, 13, 11}_{L_3=3}, \ldots)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

't' selection algorithm Question :

How to choose the model size *t*?

Fact :
$$\mathbb{E}L = rac{1}{(e^{- heta}; e^{- heta})_{\infty}}.$$

Algorithm 't' selection algorithm	
procedure $t_SEL(\mathbb{T})$	
$Err \leftarrow \infty, \ t_\text{SEL} \leftarrow 0$	Initialization
for t in \mathbb{T} do	
$\theta \leftarrow \mathrm{MLE}(t)$	▷ Run MLE heuristic algorithm
if $ t-1/(e^{- heta};e^{- heta})_{\infty} < Err$ then	
$Err \leftarrow t - 1/(e^{- heta}; e^{- heta})_{\infty} $	
$t_\text{SEL} \leftarrow t$	
end if	
end for	
$\mathbf{return} \ t_\mathbf{SEL}$	\triangleright The selected 't' is t_SEL
end procedure	

With 't' selected, we fit a Generalized Mallows model :

$$\mathbb{P}_{\vec{\theta},\pi_0}(\pi) \propto \exp\left(-\sum_{j=1}^t \theta_j \, s_j(\pi \circ \pi_0^{-1})\right).$$

Wenpin Tang Department of Mathematics, UCLA

TABLE: Accuracy of estimated rank & average training time for 50 simulated data with $t_{max} = 10$ (resp. $t_{max} = 20$, $t_{max} = 40$) and $\vec{\theta} = (1, 0.975, \dots, 0.775, 0, \dots)$ (resp. $\vec{\theta} = (1, 0.975, \dots, 0.525, 0, \dots)$), $\vec{\theta} = (1, 0.975, \dots, 0.025, 0, \dots)$) by the IGM model of model size t = 1, t = 10 and Algorithm.

$t_{max} = 10$	IGM(t = 1)	IGM(<i>t</i> = 10)	Algo
ACC. EST. RANK	100%	100%	100%
AVE. TIME	1.56 S	14.45 s	2.80 S
$t_{max} = 20$	IGM(t = 1)	IGM(t = 10)	Algo
ACC. EST. RANK	94%	100%	100%
AVE. TIME	5.73 s	54.45 s	24.42 S
$t_{max} = 40$	IGM(t = 1)	IGM(t = 10)	Algo
ACC. EST. RANK	82%	100%	100%
AVE. TIME	70.26 s	684.65 s	391.20 s

イロト イポト イヨト イヨト

э.

The algorithm is also applied to other data as APA data, university's homepage search data...

Thank you for your attention !

・聞き ・ヨキ ・ヨト