Towards Accurate Model Selection in Deep Unsupervised Domain Adaptation

Kaichao You1, Ximei Wang1, Mingsheng Long1, Michael I. Jordan2

1School of Software, Tsinghua University
1National Engineering Lab for Big Data Software
2University of California, Berkeley

International Conference on Machine Learning ICML 2019
Outline

1 Validation in UDA: the problem

2 IWCV: the previous solution

3 Deep Embedded Validation

4 Experiments
Validation in UDA: the problem

- Supervised Learning
 \[(x_1, y_1) \sim p\]

 Training

- Validation
 \[(x_2, y_2) \sim p\]

 Validation

- Test
 \[(x_3, y_3) \sim p\]

 Test
Validation in UDA: the problem

- **Supervised Learning**
 \[(x_1, y_1) \sim p\]
 \[(x_2, y_2) \sim p\]
 \[(x_3, y_3) \sim p\]

 - Training
 - Validation
 - Test

- **Unsupervised Domain Adaptation**
 \[(x_1, y_1) \sim p\]

 - Source Domain
 - Validation
 - Target Domain
 - Test
Outline

1 Validation in UDA: the problem

2 IWCV: the previous solution

3 Deep Embedded Validation

4 Experiments
IWCV: the previous solution

- Covariate Shift Assumption $p(y|x) = q(y|x)$
IWCV: the previous solution

- Covariate Shift Assumption \(p(y|x) = q(y|x) \)
- Model Selection: estimate Target Risk \(R(g) = \mathbb{E}_{x \sim q} \ell(g(x), y) \)
IWCV: the previous solution

- Covariate Shift Assumption $p(y|x) = q(y|x)$
- Model Selection: estimate Target Risk $\mathcal{R}(g) = \mathbb{E}_{x \sim q} \ell(g(x), y)$
- Importance Weighted Cross Validation 1

$$\mathbb{E}_{x \sim p} w(x) \ell(g(x), y) = \mathbb{E}_{x \sim p} \frac{q(x)}{p(x)} \ell(g(x), y) = \mathbb{E}_{x \sim q} \ell(g(x), y) = \mathcal{R}(g)$$

1Covariate shift adaptation by importance weighted cross validation, JMLR’2007
IWCV: the previous solution

- Covariate Shift Assumption \(p(y|x) = q(y|x) \)
- Model Selection: estimate Target Risk \(\mathcal{R}(g) = \mathbb{E}_{x \sim q} \ell(g(x), y) \)
- Importance Weighted Cross Validation \(^1\)

\[
\mathbb{E}_{x \sim p} w(x) \ell(g(x), y) = \mathbb{E}_{x \sim p} \frac{q(x)}{p(x)} \ell(g(x), y) = \mathbb{E}_{x \sim q} \ell(g(x), y) = \mathcal{R}(g)
\]

- Unbiased but the variance is unbounded
- Density ratio is not readily accessible

\(^1\)Covariate shift adaptation by importance weighted cross validation, JMLR’2007
Outline

1. Validation in UDA: the problem
2. IWCV: the previous solution
3. Deep Embedded Validation
4. Experiments
Deep Embedded Validation

- IWCV’s variance\(^1\): \(\text{Var}_{x \sim p}[\ell_w] \leq d^{\alpha+1}(q\|p) \, R(g)^{1-\frac{1}{\alpha}} - R(g)^2 \).

\(^1\)Learning Bounds for Importance Weighting, NeurIPS’2010
Deep Embedded Validation

- IWCV’s variance1: $\text{Var}_{x \sim p}[\ell_w] \leq d_{\alpha+1}(q\|p) \mathcal{R}(g)^{1-\frac{1}{\alpha}} - \mathcal{R}(g)^2$.
- Feature adaptation reduces distribution discrepancy2

1Learning Bounds for Importance Weighting, NeurIPS’2010
2Conditional Adversarial Domain Adaptation, NeurIPS’2018
Deep Embedded Validation

- IWCV’s variance\(^1\): \(\text{Var}_{x \sim p} [\ell_w] \leq d_{\alpha+1}(q || p) \mathcal{R}(g)^{1 - \frac{1}{\alpha}} - \mathcal{R}(g)^2\).
- Feature adaptation reduces distribution discrepancy\(^2\)
- Control variate explicitly reduces the variance
 - \(\mathbb{E}[z] = \zeta, \mathbb{E}[t] = \tau\)
 - \(z^* = z + \eta(t - \tau)\).
 - \(\mathbb{E}[z^*] = \mathbb{E}[z] + \eta \mathbb{E}[t - \tau] = \zeta + \eta(\mathbb{E}[t] - \mathbb{E}[\tau]) = \zeta\).
 - \(\text{Var}[z^*] = \text{Var}[z + \eta(t - \tau)] = \eta^2 \text{Var}[t] + 2\eta \text{Cov}(z, t) + \text{Var}[z]\)
 - \(\min \text{Var}[z^*] = (1 - \rho_{z,t}^2) \text{Var}[z], \text{ when } \hat{\eta} = -\frac{\text{Cov}(z,t)}{\text{Var}[t]}\)

\(^1\)Learning Bounds for Importance Weighting, NeurIPS’2010
\(^2\)Conditional Adversarial Domain Adaptation, NeurIPS’2018
Deep Embedded Validation

- IWCV’s variance\(^1\): \(\text{Var}_{x \sim p}[\ell_w] \leq d_{\alpha+1}(q\|p) \mathcal{R}(g)^{1 - \frac{1}{\alpha}} - \mathcal{R}(g)^2 \).
- Feature adaptation reduces distribution discrepancy\(^2\)
- Control variate explicitly reduces the variance
 - \(\mathbb{E}[z] = \zeta, \mathbb{E}[t] = \tau \)
 - \(z^* = z + \eta(t - \tau) \)
 - \(\mathbb{E}[z^*] = \mathbb{E}[z] + \eta\mathbb{E}[t - \tau] = \zeta + \eta(\mathbb{E}[t] - \mathbb{E}[\tau]) = \zeta \)
 - \(\text{Var}[z^*] = \text{Var}[z + \eta(t - \tau)] = \eta^2 \text{Var}[t] + 2\eta \text{Cov}(z, t) + \text{Var}[z] \)
 - \(\min \text{Var}[z^*] = (1 - \rho_{z,t}^2) \text{Var}[z] \), when \(\hat{\eta} = -\frac{\text{Cov}(z,t)}{\text{Var}[t]} \)
- Density ratio can be estimated discriminatively.\(^3\)

\(^1\)Learning Bounds for Importance Weighting, NeurIPS’2010
\(^2\)Conditional Adversarial Domain Adaptation, NeurIPS’2018
\(^3\)Discriminative learning for differing training and test distributions, ICML’2007
Outline

1 Validation in UDA: the problem
2 IWCV: the previous solution
3 Deep Embedded Validation
4 Experiments
Experiments

- Experiments on a toy problem under covariate shift

![Graphs showing error rate and standard deviation for different λ values.](image)

Kaichao You et al. Deep Embedded Validation June 12, 2019 9 / 10
Experiments

- Experiments on a toy problem under covariate shift

- Experiments on real-world problems
 - Various datasets: VisDA/Office/Digits
 - Various models: CDAN, MCD, GTA
 - Deep Embedded Validation is empirically validated 😊
Thanks!

Code available at github.com/thuml/Deep-Embedded-Validation
Poster: tonight at Pacific Ballroom #259