Noise2Self: Blind Denoising by Self-Supervision

Joshua Batson
Loïc Royer
Supervision

\[\| f(x) - y \|^2 \]
Self-Supervision?
Self-Supervision?
Self-Supervision?

\[\| f(x) - x \|^2 \]
Self-Supervision?

\[\| f(x) - x \|^2 \]

\[f^* = \text{Identity} \]
Self-Supervision?

\[\| f(x) - x \|^2 \]

\[f^* = \text{Identity} \]
Self-Supervision?

\[
\| f(x) - x \|^2
\]

\[f^* = \text{Identity}\]
Self-Supervision?

\[\| f(x) - x \|^2 \]

\[f^* = \text{Identity} \]
Self-Supervision?

\[\| f(x) - x \|^2 \]

\[f^* \text{ Identity} \]
Self-Supervision?

\[\| f(x) - x \|^2 \]

\[f^* = \mathbb{E}[x_{-J} | x_J] \]
Single-Image Self-Supervised CNN Training
Single-Image Self-Supervised CNN Training
Single-Image Self-Supervised CNN Training
J-invariant Deep CNN
J-invariant Deep CNN
Gaussian Processes

Matrix Factorization

Single-Cell Sequencing

Definitions

Definition. Let \mathcal{J} be a partition of the dimensions $\{1, \ldots, m\}$ and let $J \in \mathcal{J}$. A function $f : \mathbb{R}^m \to \mathbb{R}^m$ is J-invariant if $f(x)_j$ does not depend on the value of x_j. It is \mathcal{J}-invariant if it is J-invariant for each $J \in \mathcal{J}$.

Theorems

Proposition 3. Let x, y be random variables and let x^G and y^G be Gaussian random variables with the same covariance matrix. Let f^*_J and f^*_J be the corresponding optimal \mathcal{J}-invariant predictors. Then

$$\mathbb{E}\|y - f^*_J(x)\|^2 \leq \mathbb{E}\|y - f^*_J(x)\|^2.$$
donut

noisy
noisy

donut
Radius of median filter

MSE

self-supervised

ground truth

noisy

noisy