Model Function Based Conditional Gradient Method with Armijo-like Line Search

Peter Ochs
Mathematical Optimization Group
Saarland University

— 13.06.2019 —

joint work: Yura Malitsky
Constrained Smooth Optimization Problem:

\[
\min_{x \in C} f(x)
\]

- \(C \subset \mathbb{R}^N \) compact and convex constraint set

Conditional Gradient Method: Update step:

\[
y^{(k)} \in \arg\min_{y \in C} \langle \nabla f(x^{(k)}), y \rangle
\]

\[
x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)}
\]

Convergence mainly relies on:

- step size \(\gamma_k \in [0, 1] \) (we consider Armijo line search)
- Descent Lemma (implies curvature condition)
Generalizing the Descent Lemma

Descent Lemma:

\[|f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle | \leq \frac{L}{2} \| x - \bar{x} \|^2 \]

provides a measure for the **linearization error**

\[\rightsquigarrow \text{quadratic growth} \]

- \(f \) smooth non-convex
- \(L \) is the Lipschitz constant of \(\nabla f \)
Generalizing the Descent Lemma

Generalization of the Descent Lemma:

$$|f(x) - f(\bar{x}) - \langle \nabla f(\bar{x}), x - \bar{x} \rangle| \leq \omega(||x - \bar{x}||)$$

provides a measure for the linearization error

\[\sim \text{ growth given by } \omega\]

- f smooth non-convex
- $\omega: \mathbb{R}^+ \to \mathbb{R}^+$ is a growth function
Generalizing the Descent Lemma

Generalization of the Descent Lemma:

\[|f(x) - f_{\bar{x}}(x)| \leq \omega(\|x - \bar{x}\|) \]

provides a measure for the **approximation error**

\[\sim \text{ growth given by } \omega \]

- \(f \) non-smooth non-convex
- \(\omega: \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is a growth function
Model Assumption
\[|f(x) - f_{\bar{x}}(x)| \leq \omega(\|x - \bar{x}\|) \]
Model Function based Conditional Gradient Method:

\[y^{(k)} \in \arg\min_{y \in C} f_{x^{(k)}}(y) \]

\[x^{(k+1)} = \gamma_k y^{(k)} + (1 - \gamma_k) x^{(k)} \]

Examples for Model Assumption:

\[|f(x) - f_{\bar{x}}(x)| \leq \omega(\|x - \bar{x}\|) \]

- additive composite problem:

\[\min_{x \in C} \{ f(x) = g(x) + h(x) \} \]

 non-smooth \quad \text{smooth}

- model function:

\[f_{\bar{x}}(x) = g(x) + h(\bar{x}) + \langle \nabla h(\bar{x}), x - \bar{x} \rangle \]

- oracle:

\[\arg\min_{y \in C} g(y) + \langle \nabla h(x^{(k)}), y \rangle \]
Examples for Model Assumption: $|f(x) - f_{\bar{x}}(x)| \leq \omega(\|x - \bar{x}\|)$

- **hybrid Proximal–Conditional Gradient**, example:

 $$\min_{x_1 \in C_1, x_2 \in C_2} \left\{ f(x_1, x_2) = g(x_1) + h(x_2) \right\}$$

 non-smooth smooth

- $f_{\bar{x}}(x_1, x_2) = h(\bar{x}_2) + \langle \nabla h(\bar{x}_2), x_2 - \bar{x}_2 \rangle + g(x_1) + \frac{1}{2\lambda} \|x_1 - \bar{x}_1\|^2$

- **oracle:**

 $$\begin{cases}
 \arg\min_{y_1 \in C_1} g(y_1) + \frac{1}{2\lambda} \|y_1 - x_1^{(k)}\|^2 \\
 \arg\min_{y_2 \in C_2} \langle \nabla h(x_2^{(k)}), y_2 \rangle
 \end{cases}$$
Examples

- composite problem
- second order Conditional Gradient

Design model functions for your problem!