Motivation

• Robust Markov Decision Process (MDP) framework
 – Tackle model mismatch and parameter uncertainty
 – Previously, for state aggregation, performance bound on $||\nu^\pi_R - \nu^*||$ improved via robust policies:

$$O \left(\frac{1}{(1 - \gamma)^2} \right) \rightarrow O \left(\frac{1}{1 - \gamma} \right)$$
Contribution

1. Robust performance bound improvement on $||v^K - v^*||$ extended to the general kernel averager setting

$$O \left(\frac{1}{(1 - \gamma)^2} \right) \rightarrow O \left(\frac{1}{1 - \gamma} \right)$$

2. Formulation of a practical kernel-based robust algorithm, with empirical results on benchmark tasks
Kernel-based approach

1. MDP to solve \mathcal{M}

2. Kernel averager Φ and representative states $j \in \{1, \ldots, m\}$ to approximate the value function:

$$v = \Phi w$$

$\forall i, j, 0 \leq \Phi_{i,j} \leq 1$ and $\forall i, \sum_j \Phi_{i,j} = 1$

$\forall j, M(j) := \{i \mid \Phi_{i,j} > 0\}$
Kernel-based approach

2. Define a non-trivial robust MDP \tilde{M} with states = representative states

3. Obtain w^* optimal robust value in \tilde{M}

4. Derive π_{w^*} in M greedy w.r.t w^*, with:
 $$\Phi w^* \leq \nu^{\pi_{w^*}}$$
Theoretical Result

Theorem:

\(w^* \) optimal robust value in \(\tilde{\mathcal{M}} \), \(\pi_{w^*} \) \(\mathcal{M} \) greedy policy w.r.t \(w^* \), \(\nu^* \) optimal value in \(\mathcal{M} \):

\[
||\nu^{\pi_{w^*}} - \nu^*||_\infty \leq \frac{2\epsilon + L_0}{1 - \gamma}
\]

- \(w_0 = \arg\min_w ||\nu^* - \Phi w||_\infty \)
- \(\epsilon = \min_w ||\nu^* - \Phi w||_\infty \) \(\rightarrow \) Function approximator limitations
- \(L_0 = \max_w \{ (j, j') \in \tilde{\mathcal{S}} | \mathcal{M}(j) \cap \mathcal{M}(j') \neq \emptyset \} \) \(\rightarrow \) \(\nu^* \) Smoothness
Practical algorithm

1. Second kernel averager Ψ to approximate the MDP model $(r, P) \rightarrow (\hat{r}, \hat{P})$ from data

2. Solve \tilde{M} with the approximate robust Bellman operator:

$$w^{t+1}(j) \leftarrow \max_a \min_{\beta} \min \frac{\langle p, r^a + \gamma \Phi^a w^t \rangle}{\| p - \tilde{\psi}_a(i_j) \|_1} \leq \beta$$

With Robustness parameter $\beta \in [0, 2]$
Experiments: Acrobot
Acrobot
Experiments: Double Pole Balancing
Double Pole Balancing

![Graphs showing total rewards vs robustness and test environment noise.](image)
Conclusion

• Theoretical performance guarantees for robust kernel-based reinforcement learning in
 \[O \left(\frac{1}{1-\gamma} \right) \]

• Significant empirical benefits from robustness, even stronger with model mismatch (real-world settings)
Thank you!
Please come to see our poster tonight

Shiau Hong Lim, Arnaud Autef