Hessian Aided Policy Gradient

Z. Shen1, A. Ribeiro2, H. Hassani2, H. Qian1, C. Mi1

1Department of Computer Science and Technology
Zhejiang University

2Department of Electrical and Systems Engineering
University of Pennsylvania

International Conference on Machine Learning, 2019
Outline

1 Motivation
- Reinforcement Learning via Policy Optimization
- Variance Reduction for Oblivious Optimization

2 Our Results/Contribution
- Variance Reduction for Non-oblivious Optimization
- Unbiased Policy Hessian Estimator
1 Motivation
- Reinforcement Learning via Policy Optimization
- Variance Reduction for Oblivious Optimization

2 Our Results/Contribution
- Variance Reduction for Non-oblivious Optimization
- Unbiased Policy Hessian Estimator
Policy Optimization as Stochastic Maximization

\[
\max_{\theta \in \mathbb{R}^d} J(\theta) \overset{\text{def}}{=} \mathbb{E}_{\tau \sim \pi_\theta} [R(\tau)]
\]

- MDP \(\overset{\text{def}}{=} (S, A, P, r, \rho_0, \gamma) \)
 \[
P : S \times A \times S \to [0, 1], \quad r : S \times A \to \mathbb{R};
\]

- Policy: \(\pi_\theta(\cdot|s) : A \to [0, 1], \forall s \in S; \)

- Trajectory: \(\tau \overset{\text{def}}{=} (s_0, a_0, \ldots, a_{H-1}, s_H) \sim \pi_\theta: \)
 \[
a_i \sim \pi_\theta(\cdot|s_i), \quad s_{i+1} \sim P(\cdot|s_i, a_i), \quad s_0 \sim \rho_0(\cdot)
\]

Probability and discounted cumulative reward of a trajectory:

\[
p(\tau) \overset{\text{def}}{=} \rho(s_0) \prod_{h=0}^{H-1} p(s_{h+1}|s_h, a_h) \pi_\theta(a_h|s_h)
\]

\[
R(\tau) \overset{\text{def}}{=} \sum_{h=0}^{H-1} \gamma^h r(s_h, a_h)
\]

Shen, Ribeiro, Hassani, Qian, Mi

Hessian Aided Policy Gradient
Policy Optimization with REINFORCE

\[
\max_{\theta \in \mathbb{R}^d} \mathcal{J}(\theta) \overset{\text{def}}{=} \mathbb{E}_{\tau \sim \pi_{\theta}}[\mathcal{R}(\tau)]
\]

- Non-oblivious: \(p(\tau) \) depends on \(\theta \)
- REINFORCE (SGD)

\[
\theta^{t+1} := \theta^t + \eta g(\theta; S_\tau)
\]

finds \(\|\mathcal{J}(\theta_\epsilon)\| \leq \epsilon \) (\(\epsilon \)-FOSP) using \(\mathcal{O}(1/\epsilon^4) \) samples of \(\tau \)

\[
g(\theta; S_\tau) \overset{\text{def}}{=} \frac{1}{|S_\tau|} \sum_{\tau \in S_\tau} \mathcal{R}(\tau) \nabla \log \pi_{\theta}(\tau), \quad \tau \in S_\tau \sim \pi_{\theta}
\]
1 Motivation
- Reinforcement Learning via Policy Optimization
- Variance Reduction for Oblivious Optimization

2 Our Results/Contribution
- Variance Reduction for Non-oblivious Optimization
- Unbiased Policy Hessian Estimator
Oblivious Stochastic Optimization

\[
\min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \overset{\text{def}}{=} \mathbb{E}_{z \sim p(z)}[\tilde{\mathcal{L}}(\theta; z)]
\]

- **Oblivious**: \(p(z) \) is independent of \(\theta \)
- **Stochastic Gradient Descent (SGD)**

\[
\theta^{t+1} := \theta^t - \eta \nabla \tilde{\mathcal{L}}(\theta^t; S_z)
\]

finds \(\|\mathcal{L}(\theta_\epsilon)\| \leq \epsilon \) (\(\epsilon \)-FOSP) using \(\mathcal{O}(1/\epsilon^4) \) samples of \(z \)

\[
\tilde{\mathcal{L}}(\theta; S_z) \overset{\text{def}}{=} \frac{1}{|S_z|} \sum_{z \in S_z} \tilde{\mathcal{L}}(\theta; z)
\]
Variance Reduction
Oblivious Case

\[
\min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \overset{\text{def}}{=} \mathbb{E}_{z \sim p(z)}[\tilde{\mathcal{L}}(\theta; z)]
\]

- **Oblivious:** \(p(z) \) is independent of \(\theta \)
- **SPIDER** \(g^t := g^{t-1} + \Delta^t \overset{\text{def}}{=} \left[\nabla \tilde{\mathcal{L}}(\theta^t; S_z) - \nabla \tilde{\mathcal{L}}(\theta^{t-1}; S_z) \right] \)

\[\mathbb{E}_{S_z}[\Delta^t] = \nabla \mathcal{L}(\theta^t) - \nabla \mathcal{L}(\theta^{t-1}) \]

\[
\theta^{t+1} := \theta^t - \eta \cdot g^t, \quad (\mathbb{E}[g^t] = \nabla \mathcal{L}(\theta^t))
\]

finds \(\|\mathcal{L}(\theta_\epsilon)\| \leq \epsilon \) using \(\mathcal{O}(1/\epsilon^3) \) samples of \(z \)

\[
\tilde{\mathcal{L}}(\theta; S_z) \overset{\text{def}}{=} \frac{1}{|S_z|} \sum_{z \in S_z} \tilde{\mathcal{L}}(\theta; z)
\]
Variance Reduction
Non-oblivious Case?

\[
\max_{\theta \in \mathbb{R}^d} J(\theta) \overset{\text{def}}{=} \mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau)]
\] (3)

- Non-oblivious: \(p(\tau) \) depends on \(\theta \)
- SPIDER
 \[
 g^t := g^{t-1} + \Delta^t \overset{\text{def}}{=} \left[g(\theta^t; S_{\tau}) - g(\theta^{t-1}; S_{\tau}) \right], \quad \tau \in S_{\tau} \sim \pi_{\theta^t}
 \]
 \[
 \mathbb{E}_{S_{\tau}} [\Delta^t] \neq \nabla J(\theta^t) - \nabla J(\theta^{t-1})
 \]

\[
\theta^{t+1} := \theta^t + \eta g^t, \quad (\mathbb{E}[g^t] \neq \nabla J(\theta^t))
\]

\[
g(\theta; S_{\tau}) \overset{\text{def}}{=} \frac{1}{|S_{\tau}|} \sum_{\tau \in S_{\tau}} R(\tau) \nabla \log \pi_{\theta}(\tau)
\]
Outline

1. Motivation
 - Reinforcement Learning via Policy Optimization
 - Variance Reduction for Oblivious Optimization

2. Our Results/Contribution
 - Variance Reduction for Non-oblivious Optimization
 - Unbiased Policy Hessian Estimator
Variance Reduction for Non-oblivious Optimization

\[\theta^{t+1} := \theta^t + \eta g^t, \quad (E[g^t] = \nabla J(\theta^t)) \]

- \(g^t := g^{t-1} + \Delta^t, \quad E[\Delta^t] = \nabla J(\theta^t) - \nabla J(\theta^{t-1}) \)
- \(\theta_a \overset{\text{def}}{=} a \cdot \theta^t + (1 - a) \cdot \theta^{t-1}, \quad a \in [0, 1] \)

\[
\nabla J(\theta^t) - \nabla J(\theta^{t-1}) = \int_0^1 [\nabla^2 J(\theta_a) \cdot (\theta^t - \theta^{t-1})] da
\]

\[
= \left[\int_0^1 \nabla^2 J(\theta_a) da \right] \cdot (\theta^t - \theta^{t-1})
\]

\[
(E_{\tau_a}[\tilde{\nabla}^2(\theta_a; \tau_a)] = \nabla^2 J(\theta_a)) = E_{a \sim \text{Uni}([0,1])}[\nabla^2 J(\theta_a)] \cdot (\theta^t - \theta^{t-1}),
\]

\[
= E[\tilde{\nabla}^2(\theta_a) \cdot (\theta^t - \theta^{t-1})]
\]
Motivation

Our Results/Contribution

Summary

Variance Reduction for Non-oblivious Optimization

Unbiased Policy Hessian Estimator

Variance Reduction

Non-oblivious Case!

\[
\max_{\theta \in \mathbb{R}^d} \mathcal{J}(\theta) \overset{\text{def}}{=} \mathbb{E}_{\tau \sim \pi_\theta} [R(\tau)]
\]

- HAPG \(g^t := g^{t-1} + \tilde{\nabla}^2(\theta^t, \theta^{t-1}; S_{a,\tau})[\theta^t - \theta^{t-1}] \)

\[
\theta^{t+1} := \theta^t + \eta g^t, \quad (\mathbb{E}[g^t] = \mathcal{J}(\theta^t))
\]

\[
\tilde{\nabla}^2(\theta^t, \theta^{t-1}; S_{a,\tau}) \overset{\text{def}}{=} \frac{1}{|S_{a,\tau}|} \sum_{(a,\tau_a) \in S_{a,\tau}} \tilde{\nabla}^2(\theta_a; \tau_a),
\]

where \(a \sim \text{Uni}([0, 1]), \tau_a \sim \pi_{\theta_a}. (\theta_a \overset{\text{def}}{=} a \cdot \theta^t + (1 - a) \cdot \theta^{t-1}) \)

- finds \(\|\mathcal{J}(\theta_\epsilon)\| \leq \epsilon \) using \(\mathcal{O}(1/\epsilon^3) \) samples of \(\tau \).
Outline

1. Motivation
 - Reinforcement Learning via Policy Optimization
 - Variance Reduction for Oblivious Optimization

2. Our Results/Contribution
 - Variance Reduction for Non-oblivious Optimization
 - Unbiased Policy Hessian Estimator
Unbiased Policy Hessian Estimator

\[\nabla J(\theta) = \int_\tau R(\tau) \nabla p(\tau; \pi_\theta) \, d\tau = \int_\tau p(\tau; \pi_\theta) \cdot [R(\tau) \nabla \log p(\tau; \pi_\theta)] \, d\tau \]

\[\nabla^2 J(\theta) \]

\[= \int_\tau R(\tau) \nabla p(\tau; \pi_\theta)[\nabla \log p(\tau; \pi_\theta)]^\top + p(\tau; \pi_\theta) \cdot [R(\tau) \nabla^2 \log p(\tau; \pi_\theta)]d\tau \]

\[= \int_\tau R(\tau)p(\tau; \pi_\theta)\{\nabla \log p(\tau; \pi_\theta)[\nabla \log p(\tau; \pi_\theta)]^\top + \nabla^2 \log p(\tau; \pi_\theta)\}d\tau \]

\[\tilde{\nabla}^2(\theta; \tau) \overset{\text{def}}{=} R(\tau)\{\nabla \log p(\tau; \pi_\theta)[\nabla \log p(\tau; \pi_\theta)]^\top + \nabla^2 \log p(\tau; \pi_\theta)\}, \tau \sim \pi_\theta. \]
First method that provably reduces the sample complexity to achieve an ϵ-FOSP of the RL objective from $\mathcal{O}(\frac{1}{\epsilon^4})$ to $\mathcal{O}(\frac{1}{\epsilon^3})$.