Learning Action Representations for Reinforcement Learning

Yash Chandak
Georgios Theocharous
James Kostas
Scott Jordan
Philip Thomas
Reinforcement Learning

\[s = \text{State} \]
\[a = \text{Action} \]
\[r = \text{Reward} \]
Problem Statement

Thousands of possible actions!
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
- Advertisement/marketing
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
- Advertisement/marketing
- Medical treatment - drug prescription
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
- Advertisement/marketing
- Medical treatment - drug prescription
- Portfolio management
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
- Advertisement/marketing
- Medical treatment - drug prescription
- Portfolio management
- Video/Songs recommendation
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
- Advertisement/marketing
- Medical treatment - drug prescription
- Portfolio management
- Video/Songs recommendation
- ...
- ...
- Option selection
Problem Statement

Thousands of possible actions!

- Personalized tutoring systems
- Advertisement/marketing
- Medical treatment - drug prescription
- Portfolio management
- Video/Songs recommendation
- ...
- ...
- Option selection
Key Insights

- Actions are **not independent** discrete quantities.
Key Insights

- Actions are not independent discrete quantities.

- There is a low dimensional structure underlying their behavior pattern.
Key Insights

- Actions are **not independent** discrete quantities.

- There is a **low dimensional structure** underlying their behavior pattern.

- This structure can be learned **independent of the reward**.
Actions are not independent discrete quantities.

There is a low dimensional structure underlying their behavior pattern.

This structure can be learned independent of the reward.

Instead of raw actions, agent can act in this space of behavior and feedback can be generalized to similar actions.
Proposed Method
Algorithm

(a) Supervised learning of action representations.
Algorithm

(a) Supervised learning of action representations.
(b) Learning internal policy with policy gradients.
So, did it work?
Results

Maze with 2^4 actions

- AC-RA
- AC
Results

Maze with 2^8 actions

![Graph showing total expected return over episodes for AC-RA and AC.](image)
Results

Maze with 2^{12} actions

- AC-RA
- AC

Total Expected Return vs. Episodes
Results
Real-world Applications at Adobe

HelpX

Actions = 1498 tutorials

Photoshop

Actions = 1843 tools
Poster
#112
Today

thank you!
Results (Action representations)

Maze domain

Actual behavior of 2^{12} actions

Learned representations of 2^{12} actions
We can now consider a new overall policy, \(\pi_o \), such that

\[
\pi_o(a|s) = \int_{f^{-1}(a)} \pi_i(e|s)de.
\]

Here, \(\pi_i(e|s) \) represents a new internal policy which selects the action representation for the given state \(s \).
Case 1: Action representations are known

- The internal policy acts in the space of action representations
- Any existing policy gradient algorithm can be used to improve its local performance, independent of the mapping function.

Property 1. For a deterministic function, f, that maps each point, $e \in \mathbb{R}^{d_e}$, in the representation space to an action, $a \in \{0,1\}^{|A|}$, the expected updates to θ based on $\nabla J_i(\theta)$ are equivalent to updates based on $\nabla J_o(\theta, f)$. That is,

$$\nabla J_o(\theta, f) = \nabla J_i(\theta).$$
Case 2: Learning action representations

- \(P(a|e) \) required to map representation to action can be learned by satisfying the earlier assumption:
 \[
P(a|s, s') = \int_e P(a|e)P(e|s, s')
 \]

- We parameterize \(P(a|e) \) and \(P(e|s, s') \) with learnable functions \(f \) and \(g \), respectively.

- Observed transition tuples are from the required distribution.

- Parameters can be learned by minimizing the stochastic KL divergence.

- Procedure is independent of reward.
Experiments

Toy Maze:
- Agent in continuous state with n actuators.
- 2^n actions. Exponentially large action space.
- Long horizon and single goal reward.

Adobe Datasets:
- N-gram based multi-time step user behavior model from passive data.
- Rewards defined using a surrogate objective.
- **Photoshop** tool recommendation (1843 tools)
- **HelpX** tutorial recommendation (1498 tutorials)
Advantages

- **Exploits structure** in space of actions.
- **Quick generalization of feedback** to similar actions.
- **Less parameters** updated using high variance policy gradients.
- **Drop-in extension** for existing policy gradient algorithms.