A Composite Randomized Incremental Gradient Method

Junyu Zhang (University of Minnesota) and Lin Xiao (Microsoft Research)

International Conference on Machine Learning (ICML)

Long Beach, California

June 11, 2019
Composite finite-sum optimization

• problem of focus

\[
\text{minimize } \quad f \left(\frac{1}{n} \sum_{i=1}^{n} g_i(x) \right) + r(x)
\]

- \(f : \mathbb{R}^p \to \mathbb{R} \) smooth and possibly nonconvex
- \(g_i : \mathbb{R}^d \to \mathbb{R}^p \) smooth vector mapping, \(i = 1, \ldots, n \)
- \(r : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \) convex but possibly nonsmooth

\[\text{applications beyond ERM} \]
- reinforcement learning (policy evaluation)
- risk-averse optimization, financial mathematics
- \[\ldots \]
Composite finite-sum optimization

• problem of focus

\[
\minimize_{x \in \mathbb{R}^d} \quad f \left(\frac{1}{n} \sum_{i=1}^{n} g_i(x) \right) + r(x)
\]

– \(f : \mathbb{R}^p \rightarrow \mathbb{R} \) smooth and possibly nonconvex
– \(g_i : \mathbb{R}^d \rightarrow \mathbb{R}^p \) smooth vector mapping, \(i = 1, \ldots, n \)
– \(r : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\} \) convex but possibly nonsmooth

• extensions for two-level finite-sum problem

\[
\minimize_{x \in \mathbb{R}^d} \quad \frac{1}{m} \sum_{j=1}^{m} f_j \left(\frac{1}{n} \sum_{i=1}^{n} g_i(x) \right) + r(x)
\]

• applications beyond ERM
 – reinforcement learning (policy evaluation)
 – risk-averse optimization, financial mathematics
 – ...
Examples

• policy evaluation with linear function approximation

\[
\begin{align*}
\text{minimize} & \quad \mathbf{E} \left[A \right] x - \mathbf{E} [b]^2 \\
\text{subject to} & \quad x \in \mathbb{R}^d \\
A, \ b \ & \text{random, generated by MDP under fixed policy}
\end{align*}
\]
Examples

• policy evaluation with linear function approximation
 \[
 \min_{x \in \mathbb{R}^d} \| \mathbb{E}[A]x - \mathbb{E}[b] \|^2
 \]
 \(A, b\) random, generated by MDP under fixed policy

• risk-averse optimization
 \[
 \max_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{j=1}^{n} h_j(x) - \lambda \frac{1}{n} \sum_{j=1}^{n} \left(h_j(x) - \frac{1}{n} \sum_{i=1}^{n} h_i(x) \right)^2
 \]
 - average reward
 - variance of rewards (risk)
 - often treated as two-level composite finite-sum optimization
Examples

• policy evaluation with linear function approximation

 $$\text{minimize}_{x \in \mathbb{R}^d} \left\| \mathbb{E}[A]x - \mathbb{E}[b] \right\|^2$$

 A, b random, generated by MDP under fixed policy

• risk-averse optimization

 $$\text{maximize} \quad \frac{1}{n} \sum_{j=1}^{n} h_j(x) - \lambda \frac{1}{n} \sum_{j=1}^{n} \left(h_j(x) - \frac{1}{n} \sum_{i=1}^{n} h_i(x) \right)^2$$

 $$\text{average reward} \quad \text{variance of rewards (risk)}$$

 – often treated as two-level composite finite-sum optimization

 – simple transformation using $\text{Var}(a) = \mathbb{E}[a^2] - (\mathbb{E}[a])^2$

 $$\text{maximize} \quad \frac{1}{n} \sum_{j=1}^{n} h_j(x) - \lambda \left(\frac{1}{n} \sum_{j=1}^{n} h_j^2(x) - \left(\frac{1}{n} \sum_{i=1}^{n} h_i(x) \right)^2 \right)$$

 actually a one-level composite finite-sum problem
Technical challenge and related work

• challenge: biased gradient estimator
 – denote $F(x) := f(g(x))$ where $g(x) := \frac{1}{n} \sum_{i=1}^{n} g_i(x)$

 $F'(x) = [g'(x)]^T f'(g(x))$

 – subsampled estimators

 $y = \frac{1}{|S|} \sum_{i \in S} g_i(x), \quad z = \frac{1}{|S|} \sum_{i \in S} g_i'(x), \quad$ where $S \subset \{1, \ldots, n\}$

 $\mathbb{E}[y] = g(x)$ and $\mathbb{E}[z] = g'(x)$, but $\mathbb{E}[[z]^T f'(y)] \neq F'(x)$
Technical challenge and related work

• challenge: biased gradient estimator
 – denote $F(x) := f(g(x))$ where $g(x) := \frac{1}{n} \sum_{i=1}^{n} g_i(x)$

 \[
 F'(x) = [g'(x)]^T f'(g(x))
 \]
 – subsampled estimators
 \[
 y = \frac{1}{|S|} \sum_{i \in S} g_i(x), \quad z = \frac{1}{|S|} \sum_{i \in S} g'_i(x), \quad \text{where} \ S \subset \{1, \ldots, n\}
 \]
 \[
 \mathbb{E}[y] = g(x) \quad \text{and} \quad \mathbb{E}[z] = g'(x), \quad \text{but} \ \mathbb{E} \left[[z]^T f'(y) \right] \neq F'(x)
 \]

• related work
 – more general composite stochastic optimization
 (Wang, Fang & Liu 2017; Wang, Liu & Fang 2017; \ldots)
 – two-level composite finite-sum: extending SVRG
 (Lian, Wang & Liu 2017; Huo, Gu, Liu & Huang 2018; Lin, Fan, Wang & Jordan 2018; \ldots)
Main results

- composite-SAGA: single loop vs double loops of composite-SVRG
Main results

• composite-SAGA: single loop vs double loops of composite-SVRG

• sample complexity for $\mathbb{E}[\|G(x_t)\|^2] \leq \epsilon$ (with $G = F'$ if $r \equiv 0$)
 - nonconvex smooth f and g_i: $O(n + n^{2/3}\epsilon^{-1})$
 - + gradient dominant or strongly convex: $O((n + \kappa n^{2/3}) \log \epsilon^{-1})$

same as SVRG/SAGA for nonconvex finite-sum problems
Main results

• composite-SAGA: single loop vs double loops of composite-SVRG

• sample complexity for \(\mathbb{E}[\|G(x_t)\|^2] \leq \epsilon\) (with \(G = F'\) if \(r \equiv 0\))
 - nonconvex smooth \(f\) and \(g_i\): \(O(n + n^{2/3}\epsilon^{-1})\)
 - + gradient dominant or strongly convex: \(O((n + \kappa n^{2/3}) \log \epsilon^{-1})\)

same as SVRG/SAGA for nonconvex finite-sum problems

• extensions to two-level problem
 - nonconvex smooth \(f\) and \(g_i\): \(O(m + n + (m + n)^{2/3}\epsilon^{-1})\)
 (same as composite-SVRG (Huo et al. 2018))
 - + gradient dominant or optimally strongly convex:
 \[O((m + n + \kappa(m + n)^{2/3}) \log \epsilon^{-1})\]
 (better than composite-SVRG (Lian et al. 2017))
Composite SAGA algorithm (C-SAGA)

- **input:** \(x^0 \in \mathbb{R}^d, \alpha_i^0 \) for \(i = 1, \ldots, n \), and step size \(\eta > 0 \)
- initialize \(Y_0 = \frac{1}{n} \sum_{i=1}^{n} g_i(\alpha_i^0), \quad Z_0 = \frac{1}{n} \sum_{i=1}^{n} g'_i(\alpha_i^0) \)
- for \(t = 0, \ldots, T - 1 \)
 - sample with replacement \(S_t \subset \{1, \ldots, n\} \) with \(|S_t| = s \)
 - compute \[
 \begin{align*}
 y_t &= Y_t + \frac{1}{s} \sum_{j \in S_t} (g_j(x^t) - g_j(\alpha_j^t)) \\
 z_t &= Z_t + \frac{1}{s} \sum_{j \in S_t} (g'_j(x^t) - g'_j(\alpha_j^t))
 \end{align*}
 \]
 - \(x^{t+1} = \text{prox}_\eta^r \left(x^t - \eta (z_t^T f'(y_t)) \right) \)
 - update \(\alpha_j^{t+1} = x^t \) if \(j \in S_t \) and \(\alpha_j^{t+1} = \alpha_j^t \) otherwise
 - update \[
 \begin{align*}
 Y_{t+1} &= Y_t + \frac{1}{n} \sum_{j \in S_t} (g_j(x^t) - g_j(\alpha_j^t)) \\
 Z_{t+1} &= Z_t + \frac{1}{n} \sum_{j \in S_t} (g'_j(x^t) - g'_j(\alpha_j^t))
 \end{align*}
 \]
- **output:** randomly choose \(t* \in \{1, \ldots, T\} \) and output \(x^{t*} \)
Convergence analysis

\[\text{minimize } \quad \mathbf{x} \in \mathbb{R}^{d} \quad f \left(\frac{1}{n} \sum_{i=1}^{n} g_{i}(x) \right) + r(x) \]

- **assumptions**
 - \(f \) is \(\ell_{f} \)-Lipschitz and \(f' \) is \(L_{f} \)-Lipschitz
 - \(g_{i} \) is \(\ell_{g} \)-Lipschitz and \(g_{i}' \) is \(L_{g} \)-Lipschitz, \(i = 1, \ldots, n \)
 - \(r \) convex but can be non-smooth

implication: \(F' \) is \(L_{F} \)-Lipschitz with \(L_{F} = \ell_{g}^{2} L_{f} + \ell_{f} L_{g} \)
Convergence analysis

\[
\minimize_{x \in \mathbb{R}^d} \quad f \left(\frac{1}{n} \sum_{i=1}^{n} g_i(x) \right) + r(x)
\]

- assumptions
 - \(f \) is \(\ell_f \)-Lipschitz and \(f' \) is \(L_f \)-Lipschitz
 - \(g_i \) is \(\ell_g \)-Lipschitz and \(g'_i \) is \(L_g \)-Lipschitz, \(i = 1, \ldots, n \)
 - \(r \) convex but can be non-smooth

implication: \(F' \) is \(L_F \)-Lipschitz with \(L_F = \ell_g^2 L_f + \ell_f L_g \)

- sample complexity for \(\mathbb{E} \left[\|G(x_t)\|^2 \right] \leq \epsilon \), where
 \[
 G(x) = \frac{1}{\eta} \left(x - \text{prox}_r^\eta \left(x - \eta F'(x) \right) \right) = F'(x) \text{ if } r \equiv 0
 \]

 - if \(s = 1 \) and \(\eta = O \left(1 / (nL_F) \right) \), then complexity \(O \left(n / \epsilon \right) \)
 - if \(s = n^{2/3} \) and \(\eta = O \left(1 / L_F \right) \), then complexity \(O \left(n + n^{2/3} / \epsilon \right) \)
Linear convergence results

• gradient-dominant functions
 – assumption: $r \equiv 0$ and $F(x) := f \left(\frac{1}{n} \sum_{i=1}^{n} g_i(x) \right)$ satisfies

 $$F(x) - \inf_{y} F(y) \leq \frac{\nu}{2} \|F'(x)\|^2, \quad \forall x \in \mathbb{R}^d$$

 – if $s = n^{2/3}$ and $\eta = O(1/L_F)$, complexity $O\left((n + \nu n^{2/3}) \log \epsilon^{-1}\right)$

• optimally strongly convex functions
 – assumption: $\Phi(x) := F(x) + r(x)$ satisfies

 $$\Phi(x) - \Phi(x_\star) \geq \frac{\mu}{2} \|x - x_\star\|^2, \quad \forall x \in \mathbb{R}^d$$

 – if $s = n^{2/3}$ and $\eta = O(1/L_F)$, complexity $O\left((n + \mu^{-1} n^{2/3}) \log \epsilon^{-1}\right)$

• extension to two-level case: $O\left((m + n + \kappa(m + n)^{2/3}) \log \epsilon^{-1}\right)$
Experiments

• risk-averse optimization

• policy evaluation for MDP

