Kernel Normalized Cut: a Theoretical Revisit

Yoshikazu Terada\(^1,3\) & Michio Yamamoto\(^2,3\)

\(^1\)Graduate School of Engineering Science, Osaka University
\(^2\)Graduate School of Environmental and Life Science, Okayama University
\(^3\)RIKEN Center for Advanced Intelligence Project (AIP)

Unsupervised Learning (Room 103)
12:05 - 12:10, Jun 13, 2019 (Thu)
ICML2019@Long Beach
What is Normalized cut?

- Normalized cut (Ncut; Shi and Malik, 2000)
 - **Ncut** = Graph partitioning method
 - **Goal** = To find “clusters” in the graph:
 - Many edges inside the cluster
 - Fewer edges between different clusters
 - **Ncut** = Balanced cut
 - Each cluster is “reasonably large”!
 - Cut between different clusters is small.

- **Objective function of Ncut** (Number of clusters = 2)
 - \(K := (k_{ij})_{n \times n} : \) Similarity matrix, \(d_i := \sum_{i=1}^{n} k_{ij}, \) \(\text{vol}(A) := \sum_{i \in A} d_i, \)
 - Min cut: \(\text{Mcut}(A, B) := \sum_{i \in A} \sum_{j \in B} k_{ij} \)

\[
\text{Ncut}(A, B) = \text{Mcut}(A, B) \left\{ \frac{1}{\text{vol}(A)} + \frac{1}{\text{vol}(B)} \right\}
\]
Normalized cut and its related methods

- Normalized cut, Spectral clustering, Weighted kernel k-means
 - Ncut is an NP hard problem \Rightarrow Normalized Spectral clustering (SC) \Rightarrow Continuous relaxation of Ncut

- Ncut and Weighted Kernel K-Means (WKKM) (Dhillon et al., 2007)
 - WKKM with kernel h and weight $w_i : H = (h_{ij})_{n \times n}$, $W = \text{diag}(w_1, \ldots, w_n)$
 \[\sum_{i=1}^{n} w_i \min_m \| \psi_h(X_i) - \mu_m \|_h^2 = \text{Const.} - \text{tr}(\tilde{U}^T W^{1/2} H W^{1/2} \tilde{U}) \]
 - Ncut \Rightarrow WKKM with $H = D^{-1} K D^{-1}$ and $W = D$ ($D = \text{diag}(d_1, \ldots, d_n)$)

- Setting

- Data points
- Similarity matrix
- Clustering result!
Overview of this study

We study theoretical properties of clustering based on Ncut!

- Theoretical properties of Ncut
 - Weighted KM in n-dim. space
 - Ncut for data points
 - Norm. SC for data points
 - Norm. graph Laplacian (eigenvector)

- Empirical
 - Dhillon et al. (2007, IEEE PAMI)
 - Shi and Malik (2000, IEEE PAMI)

- This study
 - W. KM in n-dim. space
 - Ncut for data points
 - Norm. SC for data points
 - von Luxburg et al. (2008, AoS)

- Population
 - Weighted KM in RKHS
 - Ncut for population distribution
 - Optimality of the partition is not clear
 - Limit operator in func. space (eigenfunction)

- We also derive the fast rate of convergence of the normalized cut!
Numerical experiments

Note that we used the same tuning parameter in both Ncut and SC!