RandomShuffle Beats SGD after Finite Epochs

Jeff HaoChen
Tsinghua University

Suvrit Sra
Massachusetts Institute of Technology
Introduction

• Goal: to minimize the function

\[F(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]
Introduction

- SGD with replacement: (often appears in algorithm analysis)

 - $x_k = x_{k-1} - \gamma \nabla f_{s(k)}(x_{k-1})$

 - $s(k)$ uniformly random from $[n]$, $1 \leq k \leq T$

- SGD without replacement: (often appears in reality)

 - $x^t_k = x^t_{k-1} - \gamma \nabla f_{\sigma_t(k)}(x^t_{k-1})$

 - σ_t uniformly from random permutation of $[n]$, $1 \leq k \leq n$
Introduction

• SGD with replacement: (often appears in algorithm analysis)

 \[x_k = x_{k-1} - \gamma \nabla f_{s(k)}(x_{k-1}) \]

 \(s(k) \) uniformly random from \([n], 1 \leq k \leq T \)

• SGD without replacement: (often appears in reality)

 \[x^t_k = x^t_{k-1} - \gamma \nabla f_{\sigma_t(k)}(x^t_{k-1}) \]

 \(\sigma_t \) uniformly from random permutation of \([n], 1 \leq k \leq n \)
Introduction

• SGD with replacement: (often appears in algorithm analysis)

 • $x_k = x_{k-1} - \gamma \nabla f_{s(k)}(x_{k-1})$

 • $s(k)$ uniformly random from $[n]$, $1 \leq k \leq T$

• SGD without replacement: (often appears in reality)

 • $x^t_k = x^t_{k-1} - \gamma \nabla f_{\sigma_t(k)}(x^t_{k-1})$

 • σ_t uniformly from random permutation of $[n]$, $1 \leq k \leq n$
Introduction

• So a natural question: *which one is better?*

• A Numerical Comparison: *(Bottou, 2009)*
Introduction

• So a natural question: *which one is better?*

• A Numerical Comparison: (*Bottou, 2009*)
Introduction

• Why?

• Intuitively, we should prefer RandomShuffle for the following two reasons:
 • It uses more “information” in one epoch (by visiting each component)
 • It has smaller variance for one epoch

• However, what is a rigorous proof?
Introduction

• Why?

• Intuitively, we should prefer RandomShuffle for the following two reasons:
 • It uses more “information” in one epoch (by visiting each component)
 • It has smaller variance for one epoch

• However, what is a rigorous proof?
Introduction

• Why?

• Intuitively, we should prefer RandomShuffle for the following two reasons:
 • It uses more “information” in one epoch (by visiting each component)
 • It has smaller variance for one epoch

• However, what is a rigorous proof?
A Brief History

• Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)

\[
\begin{align*}
\text{Assume the problem is quadratic: } f_i(x) &= (a_i^T x - y_i)^2 \\
\text{Then “RandomShuffle is better than SGD after one epoch” is true under conjecture:}
\end{align*}
\]

\[
\begin{bmatrix}
\|
\begin{bmatrix}
E_{wo} \\
\prod_{j=1}^{k} A_{i_{k-j+1}} \\
\prod_{j=1}^{k} A_{i_j}
\end{bmatrix}
\| \\
\end{bmatrix}
\leq
\begin{bmatrix}
\|
\begin{bmatrix}
\prod_{j=1}^{k} A_{i_{k-j+1}} \\
\prod_{j=1}^{k} A_{i_j}
\end{bmatrix}
\|
\end{bmatrix}
\]

• Which we still don’t know how to prove yet 😞
A Brief History

• Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)

\[\text{Under strong structure, we can convert this problem into matrix inequality:} \]

• Assume the problem is quadratic: \(f_i(x) = (a_i^T x - y_i)^2 \)

• Then “RandomShuffle is better than SGD after one epoch” is true under conjecture:

\[\begin{array}{c}
\mathbb{E}_{w_0} \left[\prod_{j=1}^{k} A_{i_{k-j+1}} \prod_{j=1}^{k} A_{i_{j}} \right] \leq \mathbb{E}_{w_r} \left[\prod_{j=1}^{k} A_{i_{k-j+1}} \prod_{j=1}^{k} A_{i_{j}} \right]
\end{array} \]

• Which we still don’t know how to prove yet 😞
A Brief History

- Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)

- Assume the problem is quadratic: $f_i(x) = (a_i^T x - y_i)^2$

- Then “RandomShuffle is better than SGD after one epoch” is true under conjecture:

\[
\| E_{\text{wo}} \left[\prod_{j=1}^{k} A_{i_{k-j+1}} \prod_{j=1}^{k} A_{i_{j}} \right] \| \leq E_{\text{wr}} \left[\prod_{j=1}^{k} A_{i_{k-j+1}} \prod_{j=1}^{k} A_{i_{j}} \right] \]

- Which we still don’t know how to prove yet 😞
A Brief History

• Under **strong structure**, we can convert this problem into matrix inequality: (Recht and Ré, 2012)

\[
\left(\begin{array}{c}
\text{Recht} \\
\text{and Ré, 2012}
\end{array}\right)
\]

• Assume the problem is quadratic:

\[
f_i(x) = (a_i^T x - y_i)^2
\]

• Then “RandomShuffle is better than SGD after one epoch” is true under conjecture:

\[
\begin{aligned}
\mathbb{E}_{\text{wo}} \left[\prod_{j=1}^{k} A_{i_{k-j+1}} \prod_{j=1}^{k} A_{ij} \right] &\leq \mathbb{E}_{\text{wr}} \left[\prod_{j=1}^{k} A_{i_{k-j+1}} \prod_{j=1}^{k} A_{ij} \right]
\end{aligned}
\]

• Which we still don’t know how to prove yet 😞
A Brief History

• What about the more general situation?

• We can try to show with a better convergence bound!
 • The hope is: prove a faster worst-case convergence rate of RandomShuffle

• A well-known fact: SGD converges with rate $O \left(\frac{1}{T} \right)$:

 • $\mathbb{E}[\| x_T - x^* \|^2] \leq O \left(\frac{1}{T} \right)$
A Brief History

• What about the more general situation?

• We can try to show with a better convergence bound!

 • The hope is: prove a faster worst-case convergence rate of RandomShuffle

• A well-known fact: SGD converges with rate $O \left(\frac{1}{T} \right)$:

 • $\mathbb{E}[\| x_T - x^* \|^2] \leq O \left(\frac{1}{T} \right)$
A Brief History

• What about the more general situation?

• We can try to show with a better convergence bound!
 • The hope is: prove a faster worst-case convergence rate of RandomShuffle

• A well-known fact: SGD converges with rate $O \left(\frac{1}{T} \right)$:
 • $\mathbb{E}[\| x_T - x^* \|^2] \leq O \left(\frac{1}{T} \right)$
A Brief History

• One of the recent breakthrough: (Gürbüzbalaban, 2015)

 • Asymptotically RandomShuffle has convergence rate $O\left(\frac{1}{T^2}\right)$

 • But not sure what happen after finite epochs

• In contrast, there is a non-asymptotic result: (Shamir, 2016)

 • RandomShuffle is no worse than SGD, with provably $O\left(\frac{1}{T}\right)$ convergence rate

 • But cannot show that RandomShuffle is really faster
A Brief History

• One of the recent breakthrough: (Gürbüzbalaban, 2015)
 - Asymptotically RandomShuffle has convergence rate $O \left(\frac{1}{T^2} \right)$
 - But not sure what happen after finite epochs

• In contrast, there is a non-asymptotic result: (Shamir, 2016)
 - RandomShuffle is no worse than SGD, with provably $O \left(\frac{1}{T} \right)$ convergence rate
 - But cannot show that RandomShuffle is really faster
A Brief History

• One of the recent breakthrough: (Gürbüzbalaban, 2015)

 • **Asymptotically** RandomShuffle has convergence rate $O\left(\frac{1}{T^2}\right)$

 • But not sure what happen after finite epochs

• In contrast, there is a non-asymptotic result: (Shamir, 2016)

 • RandomShuffle is **no worse** than SGD, with provably $O\left(\frac{1}{T}\right)$ convergence rate

 • But cannot show that RandomShuffle is really faster

What happens in between?
Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex
Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, **Lipschitz Hessian**
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

Dheeraj Nagaraj et al. get rid of this constraint
Summary of results

We analyze RandomShuffle in the following settings:

- Strongly convex, Lipschitz Hessian
- Sparse data
- Vanishing variance
- Nonconvex, under PL condition
- Smooth convex

this talk
Summary of results

We analyze RandomShuffle in the following settings:

• Strongly convex, Lipschitz Hessian

• Sparse data

• Vanishing variance

• Nonconvex, under PL condition

• Smooth convex
First attempt: try to prove a tighter bound!

• Can we show a non-asymptotic bound better than \(O \left(\frac{1}{T} \right) \)? E.g., \(O \left(\frac{1}{T^{1+\delta}} \right) \)?

• If we can, then everything is solved 😊

•unless we cannot 😞

Theorem 3. Given the information of \(\mu, L, G \). Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate \(o \left(\frac{1}{T} \right) \) for any \(T \geq n \), if we do not allow \(n \) to appear in the bound.
First attempt: try to prove a tighter bound!

• Can we show a non-asymptotic bound better than $O \left(\frac{1}{T} \right)$? E.g., $O \left(\frac{1}{T^{1+\delta}} \right)$?

• If we can, then everything is solved 😊

•unless we cannot 😞

Theorem 3. Given the information of μ, L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate $o \left(\frac{1}{T} \right)$ for any $T \geq n$, if we do not allow n to appear in the bound.
First attempt: try to prove a tighter bound!

- Can we show a non-asymptotic bound better than $O\left(\frac{1}{T}\right)$? E.g., $O\left(\frac{1}{T^{1+\delta}}\right)$?

- If we can, then everything is solved 😊

-unless we cannot 😞

Theorem 3. Given the information of μ, L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate $o\left(\frac{1}{T}\right)$ for any $T \geq n$, if we do not allow n to appear in the bound.
Proof of the theorem

Theorem 3. Given the information of μ, L, G. Under the assumption of constant step sizes, no step size choice for RANOMSHUFFLE leads to a convergence rate $o\left(\frac{1}{T}\right)$ for any $T \geq n$, if we do not allow n to appear in the bound.

- We only consider the case when $T = n$, i.e., we run one epoch of the algorithm.

- We prove the theorem with a counter-example:
 - Recall function $F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$
 - We set $f_i(x) = \begin{cases}
 \frac{1}{2} (x - b)' A(x - b), & i \text{ odd,} \\
 \frac{1}{2} (x + b)' A(x + b), & i \text{ even.}
 \end{cases}$
 - A and b to be determined later...
Proof of the theorem

Theorem 3. Given the information of μ, L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate $o\left(\frac{1}{T}\right)$ for any $T \geq n$, if we do not allow n to appear in the bound.

• We only consider the case when $T = n$, i.e., we run one epoch of the algorithm

• We prove the theorem with a counter-example:

 • Recall function $F(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$

 • We set $f_i(x) = \begin{cases} \frac{1}{2} (x - b)'A(x - b), & i \text{ odd}, \\ \frac{1}{2} (x + b)'A(x + b), & i \text{ even}. \end{cases}$

 • A and b to be determined later...
Proof of the theorem

• Step 1: Calculate the error

\[
\mathbb{E}\left[||x_T - x^*||^2\right] = \left|(I - \gamma A)^T(x_0 - x^*)\right|^2 + \mathbb{E}\left[||\sum_{t=1}^{T}(-1)^{\sigma(t)}\gamma(I - \gamma A)^{T-t}Ab||^2\right]
\]

\(P\)

\(Q\)

• Step 2: Simplify via eigenvector basis decomposition

\[P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^2 p_i^2, \quad Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E}\left[\sum_{t=1}^{T}(-1)^{\sigma(t)}(1 - \gamma \lambda_i)^{T-t}\right]^2\]

• Step 3: Construct a contradiction

• For contradiction, assume there is \(\gamma\) dependent on \(T\) achieving convergence \(o\left(\frac{1}{T}\right)\)

\[
\frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)
\]
Proof of the theorem

• Step 1: Calculate the error

$$\mathbb{E} \left[\| x_T - x^* \|^2 \right] = \left\| (I - \gamma A)^T (x_0 - x^*) \right\|^2 + \mathbb{E} \left[\left\| \sum_{t=1}^T (-1)^{\sigma(t)} \gamma (I - \gamma A)^{T-t} Ab \right\|^2 \right]$$

• Step 2: Simplify via eigenvector basis decomposition

$$P = \sum_{i=1}^d (1 - \gamma \lambda_i)^2 p_i^2, \quad Q = \gamma^2 \sum_{i=1}^d q_i^2 \lambda_i^2 \mathbb{E} \left[\left(\sum_{t=1}^T (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right)^2 \right]$$

• Step 3: Construct a contradiction

For contradiction, assume there is γ dependent on T achieving convergence $o \left(\frac{1}{T} \right)$

$$\frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)$$
Proof of the theorem

• Step 1: Calculate the error

\[
\begin{align*}
\mathbb{E} \left[\left| \left| x_T - x^* \right| \right|^2 \right] &= \left| \left| (I - \gamma A)^T (x_0 - x^*) \right| \right|^2 + \mathbb{E} \left[\left| \sum_{t=1}^{T} (-1)^{\sigma(t)} \gamma (I - \gamma A)^{T-t} A b \right| \right]^2
\end{align*}
\]

\[
\begin{align*}
\text{P} \quad \text{Q}
\end{align*}
\]

• Step 2: Simplify via eigenvector basis decomposition

\[
\begin{align*}
P &= \sum_{i=1}^{d} (1 - \gamma \lambda_i)^{2T} p_i^2, \quad Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2
\end{align*}
\]

• Step 3: Construct a contradiction

• For contradiction, assume there is \(\gamma \) dependent on \(T \) achieving convergence \(o \left(\frac{1}{T} \right) \)

\[
\frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)
\]
Proof of the theorem

• Step 1: Calculate the error

\[\mathbb{E} \left[\| x_T - x^* \|^2 \right] = \left\| (I - \gamma A)^T (x_0 - x^*) \right\|^2 + \mathbb{E} \left[\left\| \sum_{t=1}^{T} (-1)^{\sigma(t)} \gamma (I - \gamma A)^{T-t} A b \right\|^2 \right] \]

• Step 2: Simplify via eigenvector basis decomposition

\[P = \sum_{i=1}^{d} (1 - \gamma \lambda_i)^2 p_i^2, \quad Q = \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2 \]

• Step 3: Construct a contradiction

• For contradiction, assume there is \(\gamma \) dependent on \(T \) achieving convergence \(o \left(\frac{1}{T} \right) \)

\[\frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1) \]
Proof of the theorem

• Step 1: Calculate the error

\[
\begin{align*}
\mathbb{E} \left[\left| x_T - x^* \right|^2 \right] &= \left\| (I - \gamma A)^T (x_0 - x^*) \right\|^2 + \mathbb{E} \left[\left\| \sum_{t=1}^{T} (-1)^{\sigma(t)} \gamma (I - \gamma A)^{T-t} A b \right\|^2 \right] \\
&= P + Q
\end{align*}
\]

• Step 2: Simplify via eigenvector basis decomposition

\[
\begin{align*}
P &= \sum_{i=1}^{d} (1 - \gamma \lambda_i)^2 p_i^2, \\
Q &= \gamma^2 \sum_{i=1}^{d} q_i^2 \lambda_i^2 \mathbb{E} \left[\sum_{t=1}^{T} (-1)^{\sigma(t)} (1 - \gamma \lambda_i)^{T-t} \right]^2
\end{align*}
\]

• Step 3: Construct a contradiction

• For contradiction, assume there is \(\gamma \) dependent on \(T \) achieving convergence \(o \left(\frac{1}{T} \right) \)

\[
\frac{\gamma T}{2 - \gamma \lambda_i} = \frac{1}{\lambda_i} + o(1)
\]

\(\implies \) Cannot be true for different \(\lambda_i \)!
What to do next?

Theorem 3. Given the information of μ, L, G. Under the assumption of constant step sizes, no step size choice for `RandomShuffle` leads to a convergence rate $o \left(\frac{1}{T} \right)$ for any $T \geq n$, if we do not allow n to appear in the bound.

• This means the best non-asymptotic rate we can hope is $O \left(\frac{1}{T} \right)$

 Short Time: $O \left(\frac{1}{T} \right)$
 Long Time: $O \left(\frac{1}{T^2} \right)$

 What happens in between?

• Key step: introduce n into the bound

 • The hope is if we can show bound like $O \left(\frac{n}{T^2} \right)$, RandomShuffle behaves better 😊
What to do next?

Theorem 3. Given the information of μ, L, G. Under the assumption of constant step sizes, no step size choice for RANDOMSHUFFLE leads to a convergence rate $o\left(\frac{1}{T}\right)$ for any $T \geq n$, if we do not allow n to appear in the bound.

- This means the best non-asymptotic rate we can hope is $O\left(\frac{1}{T}\right)$

 Short Time: $O\left(\frac{1}{T}\right)$
 Long Time: $O\left(\frac{1}{T^2}\right)$

 What happens in between?

- Key step: introduce n into the bound

 - The hope is if we can show bound like $O\left(\frac{n}{T^2}\right)$, RandomShuffle behaves better 😊
Bounds dependent on n

For general second order differentiable functions with Lipschitz Hessian:

Theorem 2. Define constant $C = \max \left\{ \frac{32}{\mu^2} (L_H L_D + 3L_H G), 12(1 + \frac{L}{\mu}) \right\}$. So long as $\frac{T}{\log T} > Cn$, with step size $\eta = \frac{8\log T}{T^\mu}$, RANDOMSHUFFLE achieves convergence rate:

$$\mathbb{E}[\|x_T - x^*\|^2] \leq O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right).$$
Bounds dependent on n

• On one hand, RandomShuffle converges with

$$O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right)$$

• On the other hand, SGD converges with

$$O\left(\frac{1}{T}\right)$$

• So the take away is:

RandomShuffle is provably better than SGD after $O(\sqrt{n})$ epochs!
Bounds dependent on n

• On one hand, RandomShuffle converges with

$$O \left(\frac{1}{T^2} + \frac{n^3}{T^3} \right)$$

• On the other hand, SGD converges with

$$O \left(\frac{1}{T} \right)$$

• So the take away is:

RandomShuffle is provably better than SGD after $O(\sqrt{n})$ epochs!
Summary of results

We analyze RandomShuffle in the following settings:

• Strongly convex, Lipschitz Hessian

• Sparse data

• Vanishing variance

• Nonconvex, under PL condition

• Smooth convex
Sparse setting

• A sparse problem can be written as:

\[F(x) = \sum_{i=1}^{n} f_i(x_{e_i}) \]

• Where each \(e_i \) is a subset of all the dimensions \([d]\)

• Consider a graph with \(n \) nodes, with edge \((i, j)\) if \(e_i \cap e_j \neq \emptyset \)

• Define the sparsity level of the problem:

\[\rho = \frac{\max_{1 \leq i \leq n} |\{e_j : e_i \cap e_j \neq \emptyset\}|}{n} \]
Sparse setting

• A sparse problem can be written as:

\[F(x) = \sum_{i=1}^{n} f_i(x_{e_i}) \]

• Where each \(e_i \) is a subset of all the dimensions \([d]\)

• Consider a graph with \(n \) nodes, with edge \((i, j)\) if \(e_i \cap e_j \neq \emptyset \)

• Define the sparsity level of the problem:

\[\rho = \frac{\max_{1 \leq i \leq n} |\{e_j : e_i \cap e_j \neq \emptyset\}|}{n} \]
Sparse setting

• A fact about sparsity:

\[
\frac{1}{n} \leq \rho \leq 1
\]

• We have the following improved bound for sparse problem:

Theorem 4. Define constant \(C = \max \left\{ \frac{32}{\mu^2} (L_H LD + 3L_H G), 12(1 + \frac{L}{\mu}) \right\} \). So long as \(\frac{T}{\log T} > C' n \), with step size \(\eta = \frac{8 \log T}{T \mu} \), RANDOMSHUFFLE achieves convergence rate:

\[
\mathbb{E}[\|x_T - x^*\|^2] \leq O\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right).
\]

• As a corollary, when \(\rho = O\left(\frac{1}{n}\right) \), there is a \(O\left(\frac{1}{T^2}\right) \) convergence rate!
Sparse setting

• A fact about sparsity:

\[
\frac{1}{n} \leq \rho \leq 1
\]

• We have the following improved bound for sparse problem:

Theorem 4. Define constant \(C = \max \left\{ \frac{32}{\mu^2} (L_H LD + 3L_H G), 12(1 + \frac{L}{\mu}) \right\} \). So long as \(\frac{T}{\log T} > C'n \), with step size \(\eta = \frac{8\log T}{T\mu} \), RANDOMSHUFFLE achieves convergence rate:

\[
\mathbb{E}[\|x_T - x^*\|^2] \leq O\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right).
\]

• As a corollary, when \(\rho = O\left(\frac{1}{n}\right) \), there is a \(O\left(\frac{1}{T^2}\right) \) convergence rate!
Sparse setting

• A fact about sparsity:

\[\frac{1}{n} \leq \rho \leq 1 \]

• We have the following improved bound for sparse problem:

Theorem 4. Define constant \(C = \max \left\{ \frac{32}{\mu^2}(L_H LD + 3L_H G), 12(1 + \frac{L}{\mu}) \right\} \). So long as \(\frac{T}{\log T} > Cn \), with step size \(\eta = \frac{8\log T}{T\mu} \), RANDOMSHUFFLE achieves convergence rate:

\[\mathbb{E}[\|x_T - x^*\|^2] \leq O\left(\frac{1}{T^2} + \frac{\rho^2 n^3}{T^3}\right). \]

• As a corollary, when \(\rho = O\left(\frac{1}{n}\right) \), there is a \(O\left(\frac{1}{T^2}\right) \) convergence rate!
Summary of results

We analyze RandomShuffle in the following settings:

• Strongly convex, Lipschitz Hessian
• Sparse data
• Vanishing variance
• Nonconvex, under PL condition
• Smooth convex
When Variance Vanishes

• When the variance vanishes at the optimality

\[f_i(x^*) = 0, \quad \forall i \]

• Given \(n \) pairs of numbers \(0 \leq \mu_i \leq L_i \), a optimal solution \(x^* \in \mathbb{R}^d \) and an initial upper bound on distance \(R \)

• A valid problem is defined as \(n \) functions and an initial point \(x_0 \) such that:

 • \(f_i \) is \(\mu_i \)-strongly convex, \(L_i \)-Lipschitz continuous

 • \(f_i'(x^*) = 0 \)

 • \(\| x_0 - x^* \|_2 \leq R \)
When Variance Vanishes

• When the variance vanishes at the optimality
 \[f_i(x^*) = 0, \quad \forall \ i \]

• Given \(n \) pairs of numbers \(0 \leq \mu_i \leq L_i \), a optimal solution \(x^* \in \mathbb{R}^d \) and an initial upper bound on distance \(R \)

• A valid problem is defined as \(n \) functions and an initial point \(x_0 \) such that:
 • \(f_i \) is \(\mu_i \)-strongly convex, \(L_i \)-Lipschitz continuous
 • \(f_i'(x^*) = 0 \)
 • \(\| x_0 - x^* \|_2 \leq R \)
When Variance Vanishes

• When the variance vanishes at the optimality
 \[f_i(x^*) = 0, \quad \forall i \]

• Given \(n \) pairs of numbers \(0 \leq \mu_i \leq L_i \), a optimal solution \(x^* \in \mathbb{R}^d \) and an initial upper bound on distance \(R \)

• A valid problem is defined as \(n \) functions and an initial point \(x_0 \) such that:

 • \(f_i \) is \(\mu_i \)-strongly convex, \(L_i \)-Lipschitz continuous

 • \(f_i'(x^*) = 0 \)

 • \(\| x_0 - x^* \|_2 \leq R \)
Theorem 5. Given constants \((\mu_1, L_1), \ldots, (\mu_n, L_n)\) such that \(0 \leq \mu_i \leq L_i\), a dimension \(d\), a point \(x^* \in \mathbb{R}^d\) and an upper bound of initial distance \(\|x_0 - x^*\|_2 \leq R\). Let \(\mathcal{P}\) be the set of valid problems. For step size \(\gamma \leq \min_i \left\{ \frac{2}{L_i + \mu_i} \right\}\) and any \(T \geq 1\), there is

\[
\max_{P \in \mathcal{P}} \mathbb{E} \left[\|X_{RS} - x^*\|^2 \right] \leq \max_{P \in \mathcal{P}} \mathbb{E} \left[\|X_{SGD} - x^*\|^2 \right].
\]
When Variance Vanishes

Theorem 5. Given constants $(\mu_1, L_1), \ldots, (\mu_n, L_n)$ such that $0 \leq \mu_i \leq L_i$, a dimension d, a point $x^* \in \mathbb{R}^d$ and an upper bound of initial distance $\|x_0 - x^*\|_2 \leq R$. Let \mathcal{P} be the set of valid problems. For step size $\gamma \leq \min_i \left\{ \frac{2}{L_i + \mu_i} \right\}$ and any $T \geq 1$, there is

$$\max_{P \in \mathcal{P}} \mathbb{E} \left[\|X_{RS} - x^*\|^2 \right] \leq \max_{P \in \mathcal{P}} \mathbb{E} \left[\|X_{SGD} - x^*\|^2 \right].$$

RandomShuffle is provably better than SGD after **ANY** number of iterations!
Thanks!