On the Complexity of Approximating Wasserstein Barycenters

Alexey Kroshnin, Darina Dvinskikh, Pavel Dvurechensky, Alexander Gasnikov, Nazarii Tupitsa, César A. Uribe
Wasserstein barycenter

\[\hat{\nu} = \arg \min_{\nu \in \mathcal{P}_2(\Omega)} \sum_{i=1}^{m} \mathcal{W}(\mu_i, \nu), \]

where \(\mathcal{W}(\mu, \nu) \) is the Wasserstein distance between measures \(\mu \) and \(\nu \) on \(\Omega \).

WB is efficient in machine learning problems with geometric data, e.g. template image reconstruction from random sample:

Figure: Images from [Cuturi & Doucet, 2014]
Motivation

We consider a set of discrete measures $p_1, \ldots, p_m \in S_n(1)$.

Main question: How much work is it needed to find their barycenter \hat{q} with accuracy ε?

$$
\frac{1}{m} \sum_{l=1}^{m} \mathcal{W}(p_l, \hat{q}) - \min_{q \in S_n(1)} \frac{1}{m} \sum_{l=1}^{m} \mathcal{W}(p_l, q) \leq \varepsilon
$$

Beyond that challenges are:

- Fine discrete approximation for continuous ν and $\mu_i \Rightarrow$ large n,
- Large amount of data \Rightarrow large m,
- Data produced and stored distributedly (e.g. produced by a network of sensors).
Background

Following [Cuturi & Doucet, 2014], we use entropic regularization.

\[
\min_{q \in S_n(1)} \frac{1}{m} \sum_{l=1}^{m} W_\gamma(p_l, q) = \min_{q \in S_n(1), \pi_l \in \Pi(p_l, q), l=1,\ldots,m} \frac{1}{m} \sum_{l=1}^{m} \left\{ \langle \pi_l, C_l \rangle + \gamma H(\pi_l) \right\}, \tag{1}
\]

- \(H(\pi) = \sum_{i,j=1}^{n} \pi_{ij} (\ln \pi_{ij} - 1) = \langle \pi, \ln \pi - 11^T \rangle \).
- \(\Pi(p, q) = \{ \pi \in \mathbb{R}_+^{n \times n} : \pi 1 = p, \pi^T 1 = q \} \).
- \(C_{ij} \) — transport cost from point \(z_i \) to \(y_j \) of the supports.

Cost of finding \(W_0(p, q) \)

- **Sinkhorn’s algorithm** \(O \left(\frac{n^2}{\varepsilon^2} \right) \), [Altschuler, Weed, Rigollet, NeurIPS’17; Dvurechensky, Gasnikov, Kroshnin, ICML’18]

- **Accelerated Gradient Descent** \(O \left(\min \left\{ \frac{n^{2.5}}{\varepsilon}, \frac{n^2}{\varepsilon^2} \right\} \right) \), [Dvurechensky, Gasnikov, Kroshnin, ICML’18; Lin, Ho, Jordan, ICML’19]
Background

Algorithms for barycenter

\[\min_{q \in S_n(1)} \frac{1}{m} \sum_{l=1}^{m} W_\gamma(p_l, q) = \min_{q \in S_n(1), \pi_l \in \Pi(p_l,q), l=1,...,m} \frac{1}{m} \sum_{l=1}^{m} \left\{ \langle \pi_l, C_l \rangle + \gamma H(\pi_l) \right\}. \]

- Sinkhorn + Gradient Descent [Cuturi, Doucet, NeurIPS’13]
- Iterative Bregman Projections [Benamou et al., SIAM J Sci Comp’15]
- (Accelerated) Gradient Descent [Cuturi, Peyre, SIAM J Im Sci’16; Dvurechensky et al, NeurIPS’18; Uribe et al., CDC’18].
- Stochastic Gradient Descent [Staib et al., NeurIPS’17; Claici, Chen, Solomon, ICML’18]

Question of complexity was open.
Contributions

- Prove that to find an ε approximation of the γ-regularized WB
 - Iterative Bregman Projections (IBP) needs $\frac{1}{\gamma \varepsilon}$ iterations;
 - Accelerated Gradient descent (AGD) needs $\sqrt{\frac{n}{\gamma \varepsilon}}$ iterations.

- Setting $\gamma = \Theta(\varepsilon / \ln n)$ allows to find an ε-approximation for the non-regularized WB with arithmetic operations complexity
 - $\tilde{O}\left(\frac{mn^2}{\varepsilon^2}\right)$ for IBP,
 - $\tilde{O}\left(\frac{mn^2.5}{\varepsilon}\right)$ for AGD.

- We propose a proximal-IBP algorithm to solve the issue of instability of IBP and AGD caused by small gamma.

- We discuss scalability of the algorithms via their distributed versions.
 - IBP can be realized distributedly in a centralized architecture (master/slaves),
 - AGD can be realized in a general decentralized architecture.
Iterative Bregman Projections

\[
\min_{\pi_l 1 = p_l, \pi_l^T 1 = \pi_{l+1}^T 1} \frac{1}{m} \sum_{l=1}^{m} \left\{ \langle \pi_l, C_l \rangle + \gamma H(\pi_l) \right\}
\]

Dual problem:

\[
\min_{u, v} \quad f(u, v) := \frac{1}{m} \sum_{l=1}^{m} \left\{ \langle 1, B_l(u_l, v_l)1 \rangle - \langle u_l, p_l \rangle \right\},
\]

\[
\frac{1}{m} \sum_{l=1}^{m} v_l = 0
\]

\[
u = [u_1, \ldots, u_m], \quad v = [v_1, \ldots, v_m], \quad u_l, v_l \in \mathbb{R}^n,
\]

\[
B_l(u_l, v_l) := \text{diag}(e^{u_l}) \exp(-C_l/\gamma) \text{diag}(e^{v_l}).
\]

IBP is equivalent to alternating minimization for the dual problem.

\[
\begin{align*}
&u_{l+1}^{t+1} := \ln p_l - \ln K_l e^{v_t^l}, \quad v^{t+1} := v^t \\
&v_{l}^{t+1} := \frac{1}{m} \sum_{k=1}^{m} \ln K_k^T e^{u_k^t} - \ln K_l^T e^{u_t^l}, \quad u^{t+1} := u^t
\end{align*}
\]
Accelerated Gradient Descent

Define symmetric p.s.d. matrix \bar{W} s.t. $\text{Ker}(\bar{W}) = \text{span}(1)$. For $W := \bar{W} \otimes I_n$ and $q = (q_1^T, \ldots, q_m^T)^T$ it holds $q_1 = \cdots = q_m \iff \sqrt{W}q = 0$

Equivalent form of problem (1)

$$\max_{q_1, \ldots, q_m \in S_1(n)} \frac{1}{m} \sum_{l=1}^{m} \mathcal{W}_{\gamma,p_l}(q_l).$$

Dual problem

$$\min_{\lambda \in \mathbb{R}^{mn}} \mathcal{W}^*(\lambda) := \frac{1}{m} \sum_{l=1}^{m} \mathcal{W}_{\gamma,p_l}^* \left(m \left[\sqrt{W} \lambda \right]_l \right).$$

Run (A)GD for the dual and reconstruct the primal solution

$$\bar{\lambda}_{l+1}^{k+1} = \bar{\lambda}_l^k - \frac{\alpha_{k+1}}{m} \sum_{j=1}^{m} W_{lj} \nabla_{p_j} \mathcal{W}_{\gamma,p_j}^* (\bar{\lambda}_{j}^{k+1})$$

$$q_{l}^{k+1} = \frac{1}{A_{k+1}} \sum_{i=0}^{k+1} \alpha_i q_i (\bar{\lambda}_l^{k+1}), \text{ where }$$

$$\nabla \mathcal{W}_{\gamma,p_l}^*(\cdot) = \nabla_{p_l} \mathcal{W}_{\gamma,p_l}(\cdot)$$
Thank you!

Welcome to poster #203, Pacific Ballroom.