On the Statistical Rate of Nonlinear Recovery in Generative Models with Heavy-tailed Data

Xiaohan Wei, Zhuoran Yang, and Zhaoran Wang

University of Southern California, Princeton University and Northwestern University

June 12th, 2019
Generative Model vs Sparsity in Signal Recovery

- Classical sparsity: structure of the signals depend on basis.
Generative Model vs Sparsity in Signal Recovery

- Classical sparsity: structure of the signals depend on basis.
- Generative model: explicit parametrization of low-dimensional signal manifold.
Generative Model vs Sparsity in Signal Recovery

- Classical sparsity: structure of the signals depend on basis.
- Generative model: explicit parametrization of low-dimensional signal manifold.
- Previous works: [Bora et al. 2017] [Hand et al. 2018] [Mardani et al. 2017].
Nonlinear Recovery via Generative Models

Given: Generative model \(\mathbf{G} : \mathbb{R}^k \to \mathbb{R}^d \) and measurement matrix \(\mathbf{X} \in \mathbb{R}^{m \times d} \).

Challenges:

1. High-dimensional recovery: \(k \ll d \), \(m \ll d \).
2. Non-Gaussian \(\mathbf{X} \) and unknown non-linearity \(f \).
3. Observations \(\mathbf{y} \) can be heavy-tailed.

\[\mathbf{y} = f(\mathbf{XG}(\theta^*)) \]
Given: Generative model $G : \mathbb{R}^k \to \mathbb{R}^d$ and measurement matrix $X \in \mathbb{R}^{m \times d}$.

Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.
Given: Generative model $G : \mathbb{R}^k \rightarrow \mathbb{R}^d$ and measurement matrix $X \in \mathbb{R}^{m \times d}$.

Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.

Challenges:
- High-dimensional recovery: $k \ll d$, $m \ll d$.
Given: Generative model $G : \mathbb{R}^k \rightarrow \mathbb{R}^d$ and measurement matrix $X \in \mathbb{R}^{m \times d}$.

Goal: Recovery $G(\theta^*)$ up to scaling from nonlinear observations $y = f(XG(\theta^*))$.

Challenges:

1. High-dimensional recovery: $k \ll d$, $m \ll d$.
2. Non-Gaussian X and unknown non-linearity f.
Nonlinear Recovery via Generative Models

Given: Generative model \(G : \mathbb{R}^k \rightarrow \mathbb{R}^d \) and measurement matrix \(X \in \mathbb{R}^{m \times d} \).

Goal: Recovery \(G(\theta^*) \) up to scaling from nonlinear observations \(y = f(XG(\theta^*)) \).

Challenges:
1. High-dimensional recovery: \(k \ll d \), \(m \ll d \).
2. Non-Gaussian \(X \) and unknown non-linearity \(f \).
3. Observations \(y \) can be heavy-tailed.
Our Method: Stein + Adaptive Thresholding

- Suppose the rows of $X := [X_1, \cdots, X_m]^T \in \mathbb{R}^{m \times d}$ have density $p : \mathbb{R}^d \rightarrow \mathbb{R}$.
- Define the (row-wise) score transformation:

$$S_p(X) := [S_p(X_1), \cdots, S_p(X_m)]^T = [\nabla \log p(X_1), \cdots, \nabla \log p(X_m)]^T.$$
Our Method: Stein + Adaptive Thresholding

- Suppose the rows of $X := [X_1, \cdots, X_m]^T \in \mathbb{R}^{m \times d}$ have density $p : \mathbb{R}^d \to \mathbb{R}$.
- Define the (row-wise) score transformation:
 $$S_p(X) := [S_p(X_1), \cdots, S_p(X_m)]^T = [\nabla \log p(X_1), \cdots, \nabla \log p(X_m)]^T.$$
- (First-order) Stein's identity: when $\mathbb{E}f'(\langle X_i, G(\theta^*) \rangle) > 0$,
 $$\mathbb{E} \left[S_p(X)^T y \right] \propto G(\theta^*).$$
- (Second-order) Stein's identity: when $\mathbb{E}f''(\langle X_i, G(\theta^*) \rangle) > 0$, δ is a constant,
 $$\mathbb{E} \left[S_p(X)^T \text{diag}(y) S_p(X) \right] \propto G(\theta^*)G(\theta^*)^T + \delta \cdot I_{d \times d}.$$
Our Method: Stein + Adaptive Thresholding

- Suppose the rows of $X := [X_1, \cdots, X_m]^T \in \mathbb{R}^{m \times d}$ have density $p : \mathbb{R}^d \to \mathbb{R}$.
- Define the (row-wise) score transformation:
 $$S_p(X) := [S_p(X_1), \cdots, S_p(X_m)]^T = [\nabla \log p(X_1), \cdots, \nabla \log p(X_m)]^T.$$
- (First-order) Stein’s identity: when $\mathbb{E} f'(\langle X_i, G(\theta^*) \rangle) > 0$,
 $$\mathbb{E} \left[S_p(X)^T y \right] \propto G(\theta^*).$$
- (Second-order) Stein’s identity: when $\mathbb{E} f''(\langle X_i, G(\theta^*) \rangle) > 0$, δ is a constant,
 $$\mathbb{E} \left[S_p(X)^T \text{diag}(y) S_p(X) \right] \propto G(\theta^*)G(\theta^*)^T + \delta \cdot I_{d \times d}.$$
- Adaptive thresholding: suppose $\|y_i\|_{L_q} < \infty$, $q > 4$, and $\tau_m \propto m^2/q$,
 $$\tilde{y}_i = \text{sign}(y_i) \cdot (|y_i| \wedge \tau_m), \quad i \in \{1, 2, \cdots, m\}.$$
Our Method: Stein + Adaptive Thresholding

- Least-squares estimator:

\[
\hat{\theta} \in \text{argmin}_{\theta \in \mathbb{R}^k} \left\| G(\theta) - \frac{1}{m} S_p(X)^T \tilde{y} \right\|_2^2.
\]
Our Method: Stein + Adaptive Thresholding

- Least-squares estimator:

\[\hat{\theta} \in \arg\min_{\theta \in \mathbb{R}^k} \left\| G(\theta) - \frac{1}{m} S_p(X)^T \tilde{y} \right\|_2^2. \]

- Main performance theorem:

Theorem (Wei, Yang and Wang, 2019)

For any accuracy level \(\varepsilon \in (0, 1) \), suppose

1. \(\mathbb{E} f'(\langle X_i, G(\theta^*) \rangle) > 0 \),
2. the generative model \(G \) is a ReLU network with zero bias,
3. the number of measurements \(m \propto k \varepsilon^{-2} \log d \).

Then, with high probability,

\[\left\| \frac{G(\hat{\theta})}{\|G(\hat{\theta})\|_2} - \frac{G(\theta^*)}{\|G(\theta^*)\|_2} \right\|_2 \leq \varepsilon. \]

- Similar results hold for more general Lipschitz generators \(G \).
Our Method: Stein + Adaptive Thresholding

- PCA type estimator:

\[
\hat{\theta} \in \arg\max_{\|G(\theta)\|_2=1} G(\theta)^T S_p(X)^T \text{diag}(\tilde{y}) S_p(X) G(\theta)
\]
Our Method: Stein + Adaptive Thresholding

- PCA type estimator:

\[
\hat{\theta} \in \arg\max_{\|G(\theta)\|_2 = 1} G(\theta)^T S_p(X)^T \text{diag}(\tilde{y}) S_p(X) G(\theta)
\]

- Main performance theorem:

Theorem (Wei, Yang and Wang, 2019)

For any accuracy level \(\varepsilon \in (0, 1] \), suppose

1. \(\mathbb{E} f''(\langle X_i, G(\theta^*) \rangle) > 0 \),
2. the generative model \(G \) is a ReLU network with zero bias,
3. the number of measurements \(m \propto k \varepsilon^{-2} \log d \).

Then, with high probability,

\[
\left\| G(\hat{\theta}) - \frac{G(\theta^*)}{\|G(\theta^*)\|_2} \right\|_2 \leq \varepsilon.
\]

- Similar results hold for more general Lipschitz generators \(G \).
Thank you!

Poster 198, Pacific Ballroom, 6:30-9:00 pm