The advantages of multiple classes for reducing overfitting from test set reuse

Vitaly Feldman
Google Research
Brain team

Roy Frostig
Google Research
Brain team

Moritz Hardt
UC Berkeley
Test data is reused. Are results still valid?

test data reuse

potential overfitting
How much bias is caused by reuse?

Meanwhile: not much overfitting on CIFAR/ImageNet/MNIST

[RRSS'18, YB'19]
Main result: class multiplicity mitigates bias

Theorem: for $k < n/m$, with n examples, m classes, k accuracy queries

\[
\text{bias} \leq \tilde{O} \left(\sqrt{\frac{k}{nm}} \right)
\]

where $bias = \frac{1}{n} \sum_{(x, y) \in S} 1[f(x) = y] - \Pr_{(x, y) \sim P}[f(x) = y]$
Main result: class multiplicity mitigates bias

Theorem: for $k < n/m$, with n examples, m classes, k accuracy queries

$$\tilde{\Omega} \left(\sqrt{\frac{k}{nm^2}} \right) \leq \text{bias} \leq \tilde{O} \left(\sqrt{\frac{k}{nm}} \right)$$

Lower bound by an *overfitting attack* that is:
- Computationally efficient
- Optimal among point-wise attacks
- Can incorporate priors
Attacking the ImageNet test set

- Scale: 50K points over 1K labels
- Prior: ResNet-50v2
- Overfitting is possible, e.g. 3% bias with ~5K queries
Also...

- The many-query regime, \(k > n/m \)
 - A recovery-based attack
 - A matching upper bound

- More experiments!