CAPSANDRUNS: An Improved Method for Approximately Optimal Algorithm Configuration

Gellért Weisz András György Csaba Szepesvári

DeepMind

ICML 2019
Problem: find good parameter settings (configurations) for general purpose solvers.
 - No structure assumed over the parameter space.
Introduction

- Problem: find good parameter settings (configurations) for general purpose solvers.
 - No structure assumed over the parameter space.

- Zillions of practical algorithms ⇔ Little theory
 Want theoretical guarantees on the runtime of
 - the chosen configuration; and
 - the configuration process.
Introduction

- **Problem:** find good parameter settings (configurations) for general purpose solvers.
 - No structure assumed over the parameter space.

- **Zillions of practical algorithms ⇔ Little theory**
 - Want theoretical guarantees on the runtime of
 - the chosen configuration; and
 - the configuration process.

- **Goal:** find a near-optimal configuration solving $1 - \delta$ fraction of the problems in the least expected time.
 - Since some instances (δ fraction) are hopelessly hard; don’t want to solve those.
Problem formulation

Given: \(n \) configurations, distribution \(\Gamma \) of problem instances.
Problem formulation

Given: n configurations, distribution Γ of problem instances.
Problem formulation

Given: \(n \) configurations, distribution \(\Gamma \) of problem instances.

- Runtime of configuration \(i \) is \((\delta, \beta)\)-optimal if \(R(\delta)(i) \leq (1 + \delta) \frac{OPT}{2} \).

Previous work (Kleinberg et al., 2011; Weisz et al., 2011): no capping of \(OPT \) using \(OPT_0 \) instead of \(\frac{OPT}{2} \).
Problem formulation

Given: n configurations, distribution Γ of problem instances.

Runtime of the optimal capped configuration:

$$\text{OPT}_\delta = \min_i R^\delta(i)$$
Problem formulation

Given: \(n \) configurations, distribution \(\Gamma \) of problem instances.

Runtime of configuration \(i \) is \((\varepsilon, \delta)\)-optimal if

\[R^\delta(i) \leq (1 + \varepsilon) \text{OPT}_{\delta/2}. \]

Runtime of the optimal capped configuration:

\[\text{OPT}_{\delta} = \min_i R^\delta(i) \]
Problem formulation

Given: \(n \) configurations, distribution \(\Gamma \) of problem instances.

Configuration \(i \) is \((\varepsilon, \delta)\)-optimal if \(R^\delta(i) \leq (1 + \varepsilon)\text{OPT}_{\delta/2} \).

Runtime of the optimal capped configuration:

\[
\text{OPT}_\delta = \min_i R^\delta(i)
\]

Previous work (Kleinberg et al., 2017; Weisz et al., 2018): no capping of \(\text{OPT} \): using \(\text{OPT}_0 \) instead of \(\text{OPT}_{\delta/2} \).
Guarantees

- Previous work (Kleinberg et al., 2017; Weisz et al., 2018): with high probability,
 (i) the algorithm finds an \((\varepsilon, \delta)\)-optimal configuration;
 (ii) with total work
 \[
 \tilde{O} \left(\text{OPT}_0 \frac{n}{\varepsilon^2 \delta} \right).
 \]

- Worst case lower bound: \(\Omega \left(\text{OPT}_0 \frac{n}{\varepsilon^2 \delta} \right)\) (Kleinberg et al., 2017).
Guarantees

- Previous work (Kleinberg et al., 2017; Weisz et al., 2018): with high probability,
 (i) the algorithm finds an \((\varepsilon, \delta)\)-optimal configuration;
 (ii) with total work
 \[
 \tilde{O}\left(\text{OPT}_0 \frac{n}{\varepsilon^2 \delta}\right).
 \]

 ★ Worst case lower bound: \(\Omega\left(\text{OPT}_0 \frac{n}{\varepsilon^2 \delta}\right)\) (Kleinberg et al., 2017).

- This work with high probability finds an \((\varepsilon, \delta)\)-optimal configuration:
 ▶ Total work (simplified version):
 \[
 \tilde{O}\left(n\text{OPT}_{\delta/2} \left(\frac{1}{\delta} + \max\left\{\frac{\sigma^2}{\max\{\varepsilon^2, \Delta^2\}}, \frac{r}{\max\{\varepsilon, \Delta\}}\right\}\right)\right),
 \]
 where
 ★ \(\Delta \sim\) gap between the best two configurations
 ★ \(\sigma^2 \sim\) runtime variances,
 ★ \(r \sim\) range of runtimes.
CAPSANDRUNS algorithm

\[\tilde{O}\left(n\OPT_{\delta/2}\left(\frac{1}{\delta} + \max\left\{\frac{\sigma^2}{\max\{\varepsilon^2, \Delta^2\}}, \frac{r}{\max\{\varepsilon, \Delta\}}\right\}\right)\right), \]

Phase I:
- For each configuration \(i \) find a runtime cap \(\tau_i \)
 - that solves between \(1 - \delta \) and \(1 - \delta/2 \) fraction of problem instances,
 - not wasting time on bad configurations.
CAPSANDRUNS algorithm

\[
\tilde{O} \left(n \text{OPT} \delta/2 \left(\frac{1}{\delta} + \max \left\{ \frac{\sigma^2}{\max\{\varepsilon^2, \Delta^2\}}, \frac{r}{\max\{\varepsilon, \Delta\}} \right\} \right) \right),
\]

Phase I:
- For each configuration \(i \) find a runtime cap \(\tau_i \)
 - that solves between \(1 - \delta \) and \(1 - \delta/2 \) fraction of problem instances,
 - not wasting time on bad configurations.

Phase II:
- Run a Bernstein race (Mnih et al., 2008) over the configurations.
 - Evaluate configurations in parallel, giving preference to better ones, shrinking confidence regions using Bernstein’s inequality.
Experiments

Configuring SAT solvers (Weisz et al., 2018):

Factor of total runtime improvement from LEAPSANDBOUNDS to CAPSANDRUNS for various values of ε and δ.

<table>
<thead>
<tr>
<th>STRUCTURED PROCRASTINATION</th>
<th>LEAPSANDBOUNDS</th>
<th>CAPSANDRUNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20643 (±5) days</td>
<td>1451 (±83) days</td>
<td>586 (±7) days</td>
</tr>
</tbody>
</table>
Thank you!

Poster #201