Domain Adaptation with Asymmetrically Relaxed Distribution Alignment

Yifan Wu, Ezra Winston, Divyansh Kaushik, Zachary Lipton

Carnegie Mellon University

ICML 2019
Unsupervised Domain Adaptation:

- Labeled data from **source** domain: \(\{(x_i, y_i)\}_{i=1,...,n} \sim p_S \cdot p_{y|x} \).
- Unlabeled data from **target** domain: \(\{x_i\}_{i=1,...,m} \sim p_T \).
- **Goal**: learn a good **target** domain classifier \(\hat{y}_x = \arg\max_y p_{y|x}(y|x) \) for \(x \sim p_T \).
Domain Adversarial Training (Ganin et al., 2016):

Learn a predictor $\hat{y}_x = h(\phi(x))$ by optimizing:

$$\min_{\phi, h} E_S(\phi, h) + \lambda D(p_S^\phi, p_T^\phi) + \Omega(\phi, h).$$

- **Source domain prediction error**
- **Distance between feature distributions in the latent space**
Problems with domain adversarial training:

- **Fails under label distribution shift.**
 - **We propose to use relaxed distribution alignment.**
- **Not clear how to prevent cross-label matching.**
 - **We drive a general error bound which explains under what assumptions this CANNOT happen.**
Our approach: replace the standard distance between distributions with a relaxed distance:

\[
\min_{\phi, h} \mathcal{E}_S(\phi, h) + \lambda D_\beta(p^\phi_S, p^\phi_T) + \Omega(\phi, h).
\]

- Relaxed Jensen-Shannon Divergence:

\[
D_{f_\beta}(p, q) = \sup_{g: \mathbb{Z} \to [0,1]} \mathbb{E}_{z \sim q} \left[\log \frac{g(z)}{2 + \beta} \right] + \mathbb{E}_{z \sim p} \left[\log \left(1 - \frac{g(z)}{2 + \beta} \right) \right].
\]

- Relaxation for any \(f \)-divergence, Wasserstein distance, etc.
Experiments - Handwritten Digits

Table: MNIST → USPS

<table>
<thead>
<tr>
<th>target labels</th>
<th>[0-4]</th>
<th>[5-9]</th>
<th>[0-9]</th>
<th>target labels</th>
<th>[0-4]</th>
<th>[5-9]</th>
<th>[0-9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>74.3±1.0</td>
<td>59.5±3.0</td>
<td>66.7±2.1</td>
<td>Source</td>
<td>69.4±2.3</td>
<td>30.3±2.8</td>
<td>49.4±2.1</td>
</tr>
<tr>
<td>DANN</td>
<td>50.0±1.9</td>
<td>28.2±2.8</td>
<td>78.5±1.6</td>
<td>DANN</td>
<td>57.6±1.1</td>
<td>37.1±3.5</td>
<td>81.9±6.7</td>
</tr>
<tr>
<td>fDANN-1</td>
<td>71.6±4.0</td>
<td>67.5±2.3</td>
<td>73.7±1.5</td>
<td>fDANN-1</td>
<td>80.4±2.0</td>
<td>40.1±3.2</td>
<td>75.4±4.5</td>
</tr>
<tr>
<td>fDANN-2</td>
<td>74.3±2.5</td>
<td>61.9±2.9</td>
<td>72.6±0.9</td>
<td>fDANN-2</td>
<td>86.6±4.9</td>
<td>41.7±6.6</td>
<td>70.0±3.3</td>
</tr>
<tr>
<td>fDANN-4</td>
<td>75.9±1.6</td>
<td>64.4±3.6</td>
<td>72.3±1.2</td>
<td>fDANN-4</td>
<td>77.6±6.8</td>
<td>34.7±7.1</td>
<td>58.5±2.2</td>
</tr>
<tr>
<td>sDANN-1</td>
<td>71.6±3.7</td>
<td>49.1±6.3</td>
<td>81.0±1.3</td>
<td>sDANN-1</td>
<td>68.2±2.7</td>
<td>45.4±7.1</td>
<td>78.8±5.3</td>
</tr>
<tr>
<td>sDANN-2</td>
<td>76.4±3.1</td>
<td>48.7±9.0</td>
<td>81.7±1.4</td>
<td>sDANN-2</td>
<td>78.6±3.6</td>
<td>36.1±5.2</td>
<td>77.4±5.7</td>
</tr>
<tr>
<td>sDANN-4</td>
<td>81.0±1.6</td>
<td>60.8±7.5</td>
<td>82.0±0.4</td>
<td>sDANN-4</td>
<td>83.5±2.7</td>
<td>41.1±6.6</td>
<td>75.6±6.9</td>
</tr>
</tbody>
</table>

Table: USPS → MNIST

The number 6 appears on page 8.
Thank You

Poster 177