Paper: Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning

Poster: Online & Untruncated Gradients for RNNs

Frederik Benzing*, Marcelo Matheus Gauy*, Asier Mujika, Anders Martinsson, Angelika Steger
Recurrent Neural Nets (RNNs)

- Model **temporal** and **sequential data** (RL, audio synthesis, language modelling,...)
- One of the key research challenges: Learn **Long-Term dependencies**
Training RNNs
Truncated Backprop Through Time (TBPTT) (Williams & Peng, 1990)

- Introduces arbitrary **Truncation Horizon** → no longer term dependencies
- **Parameter Update Lock** during forward & backward pass
Forward Computing Gradients
Real Time Recurrent Learning (RTRL) (Williams & Zipser, 1989)

Forward compute \(G_t = \frac{dh_t}{d\Theta} \) with recurrence \(G_{t+1} = H_t G_t + F_t \)

- **Untruncated** Gradients
- **Memory** is independent of sequence length
- **Online parameter updates** (no update lock)

BUT: Need \(n^4 \) Runtime and \(n^3 \) Memory (for \(n \) hidden units) → infeasible
Approximate RTRL to save time & space
Online Recurrent Optimization (UORO) (Tallec & Ollivier, 2017)

- **Idea:** Don't store G_t precisely, but **approximately**

 $G_t \approx u_t \otimes w_t$

 $n \times 1$ $1 \times n^2$

 and **unbiasedly** approximate recurrence equation.

- Memory: n^2
- Runtime: n^3
Does it work? Part I

UORO (Tallec & Ollivier, 2017) and KF-RTRL (Mujika et al., 2018)

Character-level PTB
Does it work? Part II
Provably optimal approximation – Optimal Kronecker-Sum (OK) (our contribution)

Character-level PTB

Copy Task

Input: #01101-------
Output: -------#01101
What to remember

- Truncated BPTT has problems (truncation, update lock)
- RTRL as online & untruncated alternative, but too costly
- Our OK approx of RTRL reduces costs by factor n
 - No performance loss
 - Break update lock → faster convergence
 - Theoretically optimal (for certain class of approx)
- Still need to reduce computational costs

<table>
<thead>
<tr>
<th>Memory</th>
<th>Runtime</th>
<th>Unbiased & Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTRL</td>
<td>n^3</td>
<td>n^4</td>
</tr>
<tr>
<td>r-OK</td>
<td>rn^2</td>
<td>rn^3</td>
</tr>
<tr>
<td>TBPTT</td>
<td>Tn</td>
<td>Tn^2</td>
</tr>
</tbody>
</table>