Online Control with Adversarial Disturbances

Naman Agarwal
Google AI Princeton

Joint Work with
Brian Bullins, Elad Hazan, Sham Kakade, Karan Singh
Dynamical Systems with Control

\[x_{t+1} = g(x_t, u_t) \]

- Robotics
- Autonomous Vehicles
- Data Center Cooling

[Cohen et al '18]
Our Setting

Robustly Control a Noisy Linear Dynamical System

\[x_{t+1} = Ax_t + Bu_t + w_t \]

- Known Dynamics
- Fully Observable State
Our Setting

Robustly Control a Noisy Linear Dynamical System

\[x_{t+1} = Ax_t + Bu_t + w_t \]

• Known Dynamics
• Fully Observable State

Disturbance \(w_t \) adversarially chosen (\(\| w_t \| \leq 1 \))
Our Setting

Robustly Control a Noisy Linear Dynamical System

\[x_{t+1} = Ax_t + Bu_t + w_t \]

- Known Dynamics
- Fully Observable State

Disturbance \(w_t \) adversarially chosen (\(||w_t|| \leq 1 \))

Minimize Costs - \(\sum c_t(x_t, u_t) \)

- Online and Adversarial
- General Convex Function
Our Setting

Robustly Control a Noisy Linear Dynamical System

\[x_{t+1} = Ax_t + Bu_t + w_t \]

- Known Dynamics
- Fully Observable State

Disturbance \(w_t \) adversarially chosen (\(||w_t|| \leq 1 \))

Minimize Costs - \(\sum c_t(x_t, u_t) \)

- Online and Adversarial
- General Convex Function

vs. Linear Quadratic Regulator (LQR):

Adversarial vs Random Disturbance
Online, Convex Costs vs Known Quadratic Loss
Goal – Minimize Regret

• Fixed Time horizon - T
• Produce actions u_1, u_2, \ldots, u_T to minimize \textit{regret} w.r.t \textit{best} in hindsight

\[
\sum_{t=1}^{T} c_t(x_t, u_t) - \min_K \left(\sum_{t=1}^{T} c_t(x_t(K), Kx_t(K)) \right)
\]
Goal – Minimize Regret

• Fixed Time horizon - T
• Produce actions $u_1, u_2 \ldots u_T$ to minimize \textit{regret} w.r.t best in hindsight

$$\sum_{t=1}^{T} c_t(x_t, u_t) - \min_K \left(\sum_{t=1}^{T} c_t(x_t(K), Kx_t(K)) \right)$$

u_t only knows $w_1 \ldots w_t$

\textbf{Best Linear Policy} knowing $w_1 \ldots w_T$

\textbf{Optimal} for LQR
Goal – Minimize Regret

• Fixed Time horizon - T

• Produce actions $u_1, u_2 \ldots u_T$ to minimize regret w.r.t best in hindsight

$$\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{K} \left(\sum_{t=1}^{T} c_t(x_t(K), Kx_t(K)) \right)$$

u_t only knows $w_1 \ldots w_t$

Best Linear Policy knowing $w_1 \ldots w_T$

Optimal for LQR

Counterfactual Regret – $x_t(K)$ depends on K
Previous work: H_∞ Control

• min-max problem, worst case perturbation:

$$\min_{u} \max_{w_{1:T}} \sum_{t} c(x_t, u(w_{t-1}, \ldots w_0))$$

• Disturbance $w_{1:T}$ adversarially chosen
Previous work: H_∞ Control

- min-max problem, worst case perturbation:

$$\min \max_u \sum_{t} c(x_t, u(w_{t-1}, \ldots w_0))$$

- Disturbance $w_{1:T}$ adversarially chosen

Compute
- Closed form: Quadratics
- Difficult for general costs

Adaptivity
- H_∞ is Pessimistic
- Regret: adapts to favorable sequence
Main Result

Efficient Online Algorithm: $u_1 \ldots u_T$ s.t.

$$\sum_{t=1}^{T} c_t(x_t, u_t) - \min_{K \in \text{stable}} \left(\sum_{t=1}^{T} c_t(x_t, K x_t) \right) \leq O(\sqrt{T})$$

- Convexity through Improper Relaxation
- Efficient \rightarrow Polynomial in system parameters, logarithmic in T
Outline of the approach

1. **Improper Learning:**
 Can we even figure out the best in hindsight policy?
 "relaxed" policy class: Next Control a linear function of previous w_t

2. **Strong Stability \Rightarrow**
 error feedback policy: learn change to action via "small horizon" of previous disturbances.

3. **Small Horizon \Rightarrow**
 Efficient Reduction to Online Convex Optimization (OCO) with memory [Anava et al.]
Thank You!

For more details please visit the Poster Pacific Ballroom #155

namanagarwal@google.com