HIRING UNDER UNCERTAINTY

Manish Raghavan Sreenivas Gollapudi Manish Purohit
Cornell University Google Research Google Research
EVEN BUSINESS HAS HIRING PROBLEMS!

- Lots of candidates
- Few openings
- Uncertainty
 - Candidates can reject an offer!
- Should I make an offer to the best candidates?
 - What if they reject?
 - I need to fill positions fast!
MODEL AND PROBLEM DEFINITION

- Candidates 1, 2, ..., n

- Each candidate i has
 - Value v_i
 - Probability of acceptance p_i

- Deadline T
 - Must fill all positions by deadline

- k openings
 - Cannot rescind an offer once accepted

<table>
<thead>
<tr>
<th>v_i</th>
<th>30</th>
<th>50</th>
<th>20</th>
<th>80</th>
<th>35</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>1</td>
<td>0.5</td>
<td>0.8</td>
<td>0.3</td>
<td>0.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Q: In what order should one make offers to maximize the total expected value of hired candidates?
SEQUENTIAL HIRING

- Make offers one at a time
- It takes one time step to make an offer and receive a response

Example

<table>
<thead>
<tr>
<th>v_i</th>
<th>20</th>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

$k = 2, t = 2$
Optimal solution is adaptive!

<table>
<thead>
<tr>
<th>v_i</th>
<th>20</th>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

$k = 2, t = 2$
SEQUENTIAL HIRING

- Optimal solution is adaptive!

- Solution Value:

\[
15 = 0.5 \times (10 + 10) + 0.5 \times (0 + 10)
\]

\[
0.1 \times 20 + 0.9 \times (0 + 10) = 11
\]

\[
0.5 \times (10 + 11) + 0.5 \times (10 + 10) = 18
\]

\[
v_i \quad 20 \quad 10 \quad 10 \quad 10
\]
\[
p_i \quad 0.1 \quad 0.5 \quad 0.5 \quad 1
\]

\[
k = 2, t = 2
\]
MAIN RESULTS

- Hiring a single candidate
 - Optimal solution via dynamic programming

- Hiring $k > 1$ candidates
 - Study the adaptivity gap
 - How much does an algorithm lose by considering only non-adaptive solutions?
 - Design a 2-approximation algorithm

Diagram:

- Best adaptive solution
- Best non-adaptive solution
- Adaptivity Gap
EXTENSIONS

- Making Parallel Offers
 - If k' slots are available, then make up to k' offers at once
 - Design an 8-approximation algorithm

- Knapsack Hiring
 - Each candidate also has a size s_i
 - The firm has a budget B
 - Total size of hired candidates must be at most B
 - Design a 10-approximation algorithm
THANKS!