Submodular Cost Submodular Cover with an Approximate Oracle

Victoria G. Crawford1, Alan Kuhnle2, My T. Thai1

1University of Florida

2Florida State University
Submodular Cost Submodular Cover (SCSC)

Definition (Submodular Cost Submodular Cover (SCSC))
Let \(f, c : 2^S \rightarrow \mathbb{R}_{\geq 0} \) be monotone submodular functions defined on subsets of a ground set \(S \) of size \(n \). Given threshold \(\tau \leq f(S) \), SCSC is to find

\[
\arg\min\{c(X) | X \subseteq S, f(X) \geq \tau\}.
\]

- SCSC arises in many applications
 - Influence in a social network
 - Data summarization
- NP-hard
The Greedy Algorithm

The greedy algorithm has an approximation ratio of

\[\rho \left(\ln \left(\frac{\alpha}{\beta} \right) + 1 \right) \]

(Soma & Yoshida 2015).

Algorithm 1: greedy\((f, c, \tau)\)

\[
\begin{align*}
&f_{\tau} = \min\{f, \tau\} \\
i = 0, \quad A_i = \emptyset \\
&\textbf{while } f(A_i) < \tau \textbf{ do} \\
&\quad u = \arg\max_{x \in S \setminus A_i} \frac{\Delta f_{\tau}(A_i, x)}{c(x)}; \\
&\quad i = i + 1, \quad A_i = A_{i-1} \cup \{u\}; \\
&\textbf{end while} \\
&\textbf{return } A_i
\end{align*}
\]
Approximate Oracle

- We analyse the greedy algorithm for SCSC given an approximate oracle to \(f \)
 - Sketch of \(f \)
 - Noisy evaluations of \(f \)

Definition (\(\epsilon \)-Approximate Oracle)

A function \(F : 2^S \rightarrow \mathbb{R}_{\geq 0} \) is \(\epsilon \)-approximate to \(f : 2^S \rightarrow \mathbb{R}_{\geq 0} \) if for all \(X \subseteq S \),

\[
|f(X) - F(X)| \leq \epsilon.
\]
Approximate Oracle

- \(F \) is not necessarily monotone submodular
 - Existing guarantees don’t hold

Let \(X \subseteq Y \), and \(z \notin Y \).

\[
\begin{align*}
\Delta F(X, z) & \leq \epsilon \quad \text{and} \quad \Delta F(Y, z) \leq \epsilon \\
f(X) & \leq F(X) \leq f(X \cup \{z\}) & \quad f(Y) & \leq f(Y \cup \{z\}) \leq F(Y \cup \{z\})
\end{align*}
\]
Approximation Ratios

Theorem

Let A be the set returned by the greedy algorithm with a value oracle to ϵ-approximate oracle F. Then $f(A) \geq \tau - \epsilon$. And if $\mu > 4\epsilon c_{\text{max}} \rho / c_{\text{min}}$,

$$c(A) \leq \frac{\rho}{1 - \frac{4\epsilon c_{\text{max}} \rho}{c_{\text{min}} \mu}} \left(\ln \left(\frac{\alpha}{\beta} \right) + 2 \right) c(A^*).$$

- If $\epsilon = 0$, nearly reduces to existing result; $\rho \left(\ln \left(\frac{\alpha}{\beta} \right) + 1 \right)$ (Soma & Yoshida 2015)
- β can be very small
Approximation Ratios

Theorem

Let A be the set returned by the greedy algorithm with a value oracle to ϵ-approximate oracle F. Then $f(A) \geq \tau - \epsilon$. And if $\mu > 4\epsilon c_{\max} \rho / c_{\min}$, then for any $\gamma \in (0, 1 - 4\epsilon c_{\max} \rho / c_{\min} \mu)$,

$$c(A) \leq \frac{\rho}{1 - \frac{4\epsilon c_{\max} \rho}{c_{\min} \mu} - \gamma \left(\ln \left(\frac{n\alpha \rho}{\gamma \mu} \right) + 2 \right)} c(A^*).$$

- No more β
- Incomparable
Application: Influence Threshold

- Find seed set of minimum cost such that expected propagation from seed set is at least τ
- Scalable influence estimator of Cohen et al. (2014)
 - Not submodular
 - ϵ-approximate
- Computed our approximation ratios
Thank you! Poster #168