Universal Multi-Party Poisoning Attacks

Saeed Mahloujifar
Mohammad Mahmoody
Ameer Mohammed
Multi-Party Learning

Distributions: D_1, D_n

Data Providers: P_1, P_n

Model: G
Multi-Party Learning (Round j)

Distributions	Data Providers
D_1 | P_1

D_i | P_i

D_n | P_n

G

Model$_{j-1}$
Multi-Party Learning (Round j)

Distributions

D_1

D_i

D_n

Data Providers

P_1

P_i

P_n

Model_{j-1}

G
Multi-Party Learning (Round j)

Distributions

\(D_1 \rightarrow P_1 \)

\(D_i \rightarrow P_i \)

\(D_n \rightarrow P_n \)

Data Providers

Model_{j-1}

\(G \)

\(d_j \rightarrow u_j \)
Multi-Party Learning (Round j)

Distributions

\[D_1 \rightarrow P_1 \]
\[D_i \rightarrow d_j \rightarrow P_i \]
\[D_n \rightarrow P_n \]

Data Providers

Model_{j-1} \rightarrow G \rightarrow u_j \rightarrow P_i \rightarrow d_j \rightarrow D_i

Model_j
Multi-Party Learning (Round j)

Distributions

\[D_1 \]

\[D_i \]

\[D_n \]

Data Providers

\[P_1 \]

\[P_i \]

\[P_n \]

Model \(j \)

Model \(j-1 \)

G
Poisoning in Multi-Party Learning

An adversary (partially) controls a number of data providers

\[D_1, D_i, D_n \] → \[P_1, P_i, P_n \]

\[G \] → Model
(k, q)-Poisoning Attack Model

k (out of n) of the parties become corrupted

Each corrupted party P_i samples from a different distribution D_i

$$d(D_i, D_i) \leq q$$

$k = n \rightarrow q$-Tampering [ACMPS14] [MM17] [MM18]

$q = 1 \rightarrow$ Static Corruption in MPC (crypto)
What is the inherent power of \((k, q)\)-poisoning adversaries against Multi-party Learning?
Main Theorem: Power of \((k, q)\)-Poisoning

Let \(B\) be a bad property of the model \(M\)

 - E.g. \(B(M) = 1\) if \(M\) misclassified an specific instance \(x\)

For any \(n\)-party learning protocol there is a \((k, q)\)-poisoning adversary that increases \(\Pr[B]\) from

\[
\epsilon \rightarrow \epsilon^{1 - \frac{kq}{n}}
\]
Main Theorem: Power of \((k, q)\)-Poisoning

Let \(B\) be a bad property of the model \(M\)

- E.g. \(B(M) = 1\) if \(M\) misclassified an specific instance \(x\)

For any \(n\)-party learning protocol there is a \((k, q)\)-poisoning adversary that increases \(\Pr[B]\) from

\[
\epsilon \rightarrow \epsilon^{1 - \frac{kq}{n}}
\]

<table>
<thead>
<tr>
<th>(\Pr[B]) Before attack</th>
<th>(q)</th>
<th>(k)</th>
<th>(\Pr[B]) after attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>1/2</td>
<td>(n/2)</td>
<td>11%</td>
</tr>
<tr>
<td>5%</td>
<td>1/2</td>
<td>(n)</td>
<td>22%</td>
</tr>
<tr>
<td>5%</td>
<td>1</td>
<td>(n/2)</td>
<td>22%</td>
</tr>
</tbody>
</table>
Features of Attack

• **Universal**: provably work against any learning protocol
 • In contrast with: [Bagdasaryan et al 2018; Bhagoji et al. 2018]

• **Clean label**: Only uses correct labels
 • Similar to: [M et al 2017; Shafahi et al 2018]

• **Polynomial time**
 • Similar to: [M and Mahmoudy 2019]
Ideas Behind Attack

- Main Idea: Treat protocol as random process and run a biasing attack
 - The bad property is a function over the random process
 - We want to bias that function, similar to attacks in coin tossing
Ideas Behind Attack

• Main Idea: Treat protocol as random process and run a biasing attack
 • The bad property is a function over the random process
 • We want to bias that function, similar to attacks in coin tossing
• New biasing model: Generalized p-Tampering.
Ideas Behind Attack

• Main Idea: Treat protocol as random process and run a biasing attack
 • The bad property is a function over the random process
 • We want to bias that function, similar to attacks in coin tossing

• New biasing model: Generalized p-Tampering.

Let $f : (U_1, ..., U_n) \rightarrow \{0,1\}$
Ideas Behind Attack

• Main Idea: Treat protocol as random process and run a biasing attack
 • The bad property is a function over the random process
 • We want to bias that function, similar to attacks in coin tossing

• New biasing model: Generalized p-Tampering.

Let $f : (U_1, ..., U_n) \rightarrow \{0,1\}$
Input blocks $u_1, u_2, ... u_n$ are sampled one-by one in online way:
Ideas Behind Attack

• Main Idea: Treat protocol as random process and run a biasing attack
 • The bad property is a function over the random process
 • We want to bias that function, similar to attacks in coin tossing

• New biasing model: Generalized \(p \)-Tampering.

Let \(f : (U_1, ..., U_n) \rightarrow \{0,1\} \)

Input blocks \(u_1, u_2, ... u_n \) are sampled one-by-one in online way:

\[
u_i = \begin{cases}
U_i & \text{with marginal probability } 1 - p \\
\text{with marginal probability } p & \text{with marginal probability } p
\end{cases}
\]
Ideas Behind Attack

• Main Idea: Treat protocol as random process and run a biasing attack
 • The bad property is a function over the random process
 • We want to bias that function, similar to attacks in coin tossing

• New biasing model: Generalized p-Tampering.

Let $f : (U_1, ..., U_n) \rightarrow \{0,1\}$

Input blocks $u_1, u_2, ... u_n$ are sampled one-by-one in online way:

$$u_i = \begin{cases} U_i & \text{with marginal probability } 1 - p \\ \text{devil} & \text{with marginal probability } p \end{cases}$$

Our generalized p-tampering attack based on Ideas in coin tossing attacks [BOL89,IH14]
Summary

We show Poisoning attacks against multi-party learning protocols:

- **Universal**: Provably apply to any multi-party learning protocol
- **Clean label**: Only uses samples with correct labels
- Run in **polynomial time**
- Increase the probability of **any chosen bad property**