Neural Joint Source-Channel Coding

Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, Stefano Ermon

Computer Science Department, Stanford University
Motivation

Reliable, robust, and efficient information transmission is key for everyday communication.
Problem Statement

Compression (Source coding)

Channel coding

Channel decoding

Decompression

Reliable communication across noisy channel

Separation Theorem [Shannon 1948]
Assumes infinite blocklength & compute
Neural Joint Source-Channel Coding

Learn to jointly compress and channel code
Maximize mutual information [MacKay 2003]
Coding Process

\[p(x, \hat{y}, y, \hat{x}) = p_{\text{data}}(x) q_{\text{enc}}(\hat{y} | x; \phi) p_{\text{channel}}(y | \hat{y}; \epsilon) p_{\text{dec}}(\hat{x} | y; \theta) \]
Learning Objective

• Mutual information maximization
 • \(Y \) should capture as much information about \(X \) as possible, even after corruption!
 • Estimation is hard 😞 [Barber & Agakov 2004]
• Variational lower bound is nicer:

\[
\max_{\phi} I(X, Y; \phi, \epsilon) = \max_{\phi} H(X) - H(X|Y; \phi, \epsilon) \\
\geq \max_{\theta, \phi} \mathbb{E}_{x \sim p_{\text{data}}(x)} \mathbb{E}_{y \sim q_{\text{noisy-enc}}(y|x; \epsilon, \phi)} [\log p_{\text{dec}}(x|y; \theta)].
\]

[Kingma & Welling 2014] [Vincent 2008]

Reconstruction loss!
Optimization Procedure

- Our latent variables y are discrete 😞
- Use VIMCO: [Mnih and Rezende 2016]
 - Draw multiple (K) samples from inference network, get tighter lower bound

$$
\mathcal{L}^K(\phi, \theta; x, \epsilon) = \sum_{x \in \mathcal{D}} \mathbb{E}_{y^{1:K} \sim q_{\text{noisy-enc}}(y|x;\epsilon,\phi)} \left[\frac{1}{K} \sum_{i=1}^{K} p_{\text{dec}}(x|y^i;\theta) \right]
$$

Multiple samples of y

Multiple reconstruction loss terms
We need a much smaller number of bits to get the same level of distortion, even vs. WebP [Google 2010] + ideal channel code.
Extremely Fast Decoding

Up to 2x orders of magnitude in speedup on GPU vs. LDPC decoder [Gallager 1963]
Learning the Data Distribution

Theorem (informal): NECST learns an implicit model of $p_{\text{data}}(x)$
Robust Representation Learning

1) Encoded redundancies: interpolation in latent space by bit-flip

2) Improved downstream classification: improves accuracy by as much as 29% across variety of classifiers when inputs are corrupted by noise!
Summary

• End-to-end deep generative modeling framework for the JSCC problem
• Better bitlength efficiency than separation scheme on CIFAR10, CelebA, SVHN
• Another way to learn robust latent representations
• Get an extremely fast decoder for free
Thanks!

Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon

Contact: kechoi@stanford.edu
Code: https://github.com/ermongroup/necst
Poster #165: Tuesday, June 11th @ Pacific Ballroom