Inference and Sampling of K_{33}-free Ising Models

Valerii Likhosherstov1, Yury Maximov1,2, Michael Chertkov1,2,3

1 Skolkovo Institute of Science and Technology, Moscow, Russia
2 Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
3 Graduate Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA

June 11, 2019
Definitions and Notations

For a graph $G = (V, E)$, $|V| = N$, zero-field Ising model is a distribution over $S \in \{-1, +1\}^N$ defined as

$$
\mathbb{P}(S = X) = \frac{1}{Z} \exp\left(\sum_{e=\{v,w\} \in E} J_e x_v x_w \right)
$$

(1)

where $\{J_e\}_{e \in E}$ are pairwise interactions and

$$
Z(J) = \sum_{X \in \{-1,+1\}^N} \exp\left(\sum_{e=\{v,w\} \in E} J_e x_v x_w \right)
$$

(2)

is a partition function.
Problem Overview

Question
For which graphs G can we compute Z and sample from $\mathbb{P}(S)$?

Fact (Barahona, 1982)
Even when G is a two-level square grid, the task of finding Z is NP-hard.

Fact (Jerrum & Sinclair, 1993)
Even when $J > 0$, the task of finding Z is $\#P$-complete.
Problem Overview: Planar Zero-field Ising Models

Planar zero-field Ising model - a case when G is planar.

Theorem

Given a planar zero-field Ising model, finding Z and sampling from $\mathbb{P}(S)$ takes $O(N^{3/2})$ time.

- Theorem is due to (Kasteleyn, 1963; Wilson, 1997; Schraudolph & Kamenetsky, 2009; Thomas & Middleton, 2009; 2013).
- No self-contained description of the algorithm.
- Extension to arbitrary genus g with a factor of 4^g (Gallucio & Loebl, 1999).
Algorithm Overview: Graph Decomposition

Informal definition

A tree of triconnected components T of graph G is a tree decomposition of G into triconnected graphs G_t with shared edges.

Theorem (Hopcroft & Tarjan, 1973)

A tree of triconnected components is unique and can be obtained in $O(N + |E|)$.
Algorithm Overview: Inference of K_{33}-free Zero-field Ising Models

Lemma (Hall, 1943)

*Graph G is K_{33}-free if and only if its triconnected components are either planar or K_5.***

Theorem

Given a K_{33}-free zero-field Ising model, finding Z and sampling from $P(S)$ takes $O(N^{3/2})$ time.
Conclusions

Main results:

- Self-contained description of $O(N^{3/2})$ inference and sampling of planar zero-field Ising models.
- $O(N^{3/2})$ inference and sampling of K_{33}-free Ising models.

Poster: “Inference and Sampling of K_{33}-free Ising Models”, Valerii Likhosherstov, Yury Maximov, Michael Chertkov.

Pacific Ballroom #162