Open-ended learning in symmetric zero-sum games

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M. Czarnecki, Julien Perolat, Max Jaderberg, Thore Graepel
Long ago and far away (mid-1800s in Cambridge, England):

First tutor: “I'm teaching the most brilliant boy in Britain”
Second tutor: “Well, I'm teaching the best test-taker”

Depending on the version of the story, the first boy was either Lord Kelvin or James Clerk Maxwell. The second boy indeed scored highest on the Mathematical Tripos, but is otherwise long forgotten.
Modern learning algorithms are outstanding test-takers

But intelligence is about more than taking tests
It’s also about formulating useful problems

Long ago and far away (mid-1800s in Cambridge, England):

First tutor: “I’m teaching the most brilliant boy in Britain”
Second tutor: “Well, I’m teaching the best test-taker”

Depending on the version of the story, the first boy was either Lord Kelvin or James Clerk Maxwell. The second boy indeed scored highest on the Mathematical Tripos, but is otherwise long forgotten.
Where do problems come from?

Answer #1:

Someone packages a dataset into a loss function

- e.g. ImageNet, CIFAR, MNIST, ...
Where do problems come from?

Answer #1:

Someone packages a dataset into a loss function

 e.g. ImageNet, CIFAR, MNIST, ...

Answer #2:

Someone builds a task (that is, an environment sprinkled with rewards)

 e.g. Arcade Learning Environment, DM-Lab, Open AI gym, ...
Where do problems come from?

Answer #3:

Self-play in symmetric zero-sum games

The agent is the task -- create an outer loop that bends deep RL on itself
(Naive) self-play is an open-ended learning algorithm

It's pretty amazing

Algorithm 2 Self-play

\[
\text{input: agent } v_1 \\
\text{for } t = 1, \ldots, T \text{ do} \\
\quad v_{t+1} \leftarrow \text{oracle } (v_t, \phi_{v_t}(\bullet)) \\
\text{end for} \\
\text{output: } v_{T+1}
\]
(Naive) self-play is an open-ended learning algorithm

but ...

there are really simple examples where it completely breaks down

It's not a general purpose learning algorithm, not even for zero-sum games
On the varieties of zero-sum games

transitive: “relative skill determines who wins”

cyclic: “every strategy has a counter-strategy”
Theorem: Any symmetric two-player zero-sum game decomposes into [transitive] + [cyclic] components.

transitive: skill determines outcome

cyclic: every strategy has a counter-strategy
The paper:

How to formulate **useful** objectives in non-transitive games

New tools:

- **Gamescapes** (generalize landscapes, but represent many objectives)
- **Population-level performance** measures
- **Population-level training** algorithms