Stable-Predictive Optimistic Counterfactual Regret Minimization

Gabriele Farina1
Noam Brown1
Christian Kroer2
Tuomas Sandholm1,3

1 Computer Science Department, Carnegie Mellon University
2 IEOR Department, Columbia University
Recent Interest in Extensive-Form Games (EFGs)

• EFGs are games played on a game tree
 – Can capture both **sequential** and **simultaneous** moves
 – Can capture **private information**

• **Application**: recent breakthroughs show that it is possible to compute approximate Nash equilibria in large poker games:
 – Heads-Up Limit Texas Hold’Em [Bowling, Burch, Johanson and Tammelin, Science 2015]
 – Heads-Up No-Limit Texas Hold’Em
 • The game has 10^{161} decision points (before abstraction)!
 • Finally reached **superhuman** level (after 20 years of effort) [Brown and Sandholm, Science 2017]
Counterfactual Regret Minimization (CFR)

• Defines a class of regret minimizers

• Specifically designed for EFGs: regret is minimized locally at each decision point in the game
 – By taking into account the combinatorial structure of the game tree, it enables game-specific techniques, such as pruning subtrees, and warm starting different parts of the tree separately

• Convergence rate $\Theta(T^{-1/2})$

• Practical state of the art for approximating Nash equilibrium in EFGs for 10+ years (when used in conjunction with alternation and other techniques)
Optimistic (aka Predictive) Regret Minimization

• Recent development in online learning
• Idea: inform device with **prediction of next loss**
 – **Accurate** prediction \implies **small** regret
 – Several optimistic/predictive regret minimizers are known in the literature, notably Optimistic Follow-the-Regularized-Leader (OFTRL)
 – **Enables convergence rate** of $\Theta(T^{-1})$ to Nash equilibrium in matrix games

• **Natural idea:** can we combine CFR’s idea of local regret minimization with the improved convergence rate of predictive regret minimization?
Our Contributions

- We present the first CFR variant which breaks the $\Theta(T^{-1/2})$ convergence rate to Nash equilibrium, where T is the number of iterations. Our algorithm converges to a Nash equilibrium at the improved rate $O(T^{-3/4})$.

- Our algorithm is based on the notion of “stable-predictive” regret minimizers, which are a particular type of predictive regret minimizers that we introduce.

- Our algorithm operates locally at each decision point. We show how different local regret minimizers should be set up differently at different parts of the game tree.
 - Main idea: the stability parameter of the different regret minimizers drops exponentially fast with the depth of the decision point.
 - Any stable-predictive regret minimizer (such as OFTRL) can be used as long as it respects the requirements on the stability parameter.