Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel k-means Clustering

Manuel Fernández V, David P. Woodruff, Taisuke Yasuda
Overview

- Preliminaries
- Kernel ridge regression
- Kernel k-means clustering
- Query-efficient algorithm for mixtures of Gaussians
Kernel Method

- Many machine learning tasks can be expressed as a function of the inner product matrix G of the data points (rather than the design matrix).
- Implicitly apply the exact same algorithm to the data set under a feature map through the use of a kernel function.
- The analogue of the inner product matrix G is called the kernel matrix K.
Kernel Query Complexity

- In this work, we study *kernel query complexity*: the number of entries of the kernel matrix K read.
Kernel Ridge Regression (KRR)

- Kernel method applied to ridge regression
 \[\alpha_{\text{opt}} = \arg\min_{\alpha \in \mathbb{R}^n} \|K\alpha - z\|_2^2 + \lambda \alpha^\top K\alpha \]
 \[= (K + \lambda I_n)^{-1}z \]

- Approximation guarantee
 \[\|\hat{\alpha} - \alpha_{\text{opt}}\|_2 \leq \varepsilon \|\alpha_{\text{opt}}\|_2 \]
Query-Efficient Algorithms

- State of the art approximation algorithms have sublinear and data-dependent runtime and query complexity (Musco and Musco NeurIPS 2017, El Alaoui and Mahoney NeurIPS 2015)
- Sample $\tilde{O}(d_{\text{eff}}^\lambda / \varepsilon)$ rows proportionally to ridge leverage scores where
 \[
d_{\text{eff}}^\lambda (K) := \text{tr} \left((K + \lambda I_n)^{-1} \right) = \sum_{i=1}^{r} \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\n\]
- Query complexity $\tilde{O}(n d_{\text{eff}}^\lambda / \varepsilon)$
Contribution 1: Tight Lower Bounds for KRR

Theorem (informal)

Any randomized algorithm computing a $(1 + \varepsilon)$-approximate KRR solution with probability at least $2/3$ makes at least $\Omega(nd_{\text{eff}}^\lambda / \varepsilon)$ kernel queries.

- Effective against randomized and adaptive (data-dependent) algorithms
- Tight up to logarithmic factors
Contribution 1: Tight Lower Bounds for KRR

Proof (sketch)

- By Yao’s minimax principle, suffices to prove for deterministic algorithms on a hard input distribution.
- Our hard input distribution: all ones vector for the target vector z, regularization $\lambda = \frac{n}{k}$.
Contribution 1: Tight Lower Bounds for KRR

- Data distribution μ_{KRR} for the kernel matrix:

\[
\begin{align*}
2n\varepsilon \div k \\
n\varepsilon \div k
\end{align*}
\]

permute
Contribution 1: Tight Lower Bounds for KRR

- Inner product matrix of standard basis vectors, $2n\varepsilon/k$ copies of e_j for the first $k/4\varepsilon$ coordinates, and $n\varepsilon/k$ copies of the next $k/2\varepsilon$
- Half of the data points belong to “large clusters”, the other half belong to “small clusters”
- In order to label a row as “large cluster” or “small cluster”, any algorithm must read $\Omega(k/\varepsilon)$ entries of the row
- In order to label a constant fraction of rows, need to read $\Omega(nk/\varepsilon)$ entries of the kernel matrix
Contribution 1: Tight Lower Bounds for KRR

Lemma

Any randomized algorithm for labeling a constant fraction of rows of a kernel matrix drawn from μ_{KRR} must read $\Omega(nk/\epsilon)$ kernel entries.

- Proven using standard techniques
Contribution 1: Tight Lower Bounds for KRR Reduction

Main Idea: one can just read off the labels of all the rows from the optimal KRR solution, and one can do this for a constant fraction of the rows from an approximate KRR solution.
Contribution 1: Tight Lower Bounds for KRR

- Let $K = U \Sigma U^T$ be the SVD of the kernel matrix
- The columns are the eigenvectors of K and the cluster size n_j is the corresponding eigenvalue, and these are orthogonal
- The target vector is the sum of these columns

$$z = \sum_{j \in [3J/4]} \sqrt{n_j} U e_j$$
Contribution 1: Tight Lower Bounds for KRR
Contribution 1: Tight Lower Bounds for KRR

Optimal KRR solution

\[\alpha_{\text{opt}} = (K + \lambda I_n)^{-1} z \]

\[= \sum_{j \in [3J/4]} \frac{1}{n_j + \lambda} (\sqrt{n_j} U e_j) \]
Contribution 1: Tight Lower Bounds for KRR

Optimal KRR solution

$$e_i^\top \alpha_{opt} = \begin{cases}
(2n\varepsilon/k + n/k)^{-1} = \frac{k/n}{1+2\varepsilon} & \text{if row } i \text{ has block size } 2n\varepsilon/k \\
(n\varepsilon/k + n/k)^{-1} = \frac{k/n}{1+\varepsilon} & \text{if row } i \text{ has block size } n\varepsilon/k
\end{cases}$$

Thus, the entries are separated by a multiplicative $(1 \pm \Omega(\varepsilon))$ factor.
Contribution 1: Tight Lower Bounds for KRR

Approximate KRR solution

- By averaging the approximation guarantee over the coordinates, we can still distinguish the cluster sizes for a constant fraction of the coordinates

\[\| \hat{\alpha} - \alpha_{opt} \|_2 \leq \varepsilon \| \alpha_{opt} \|_2 \]
Contribution 1: Tight Lower Bounds for KRR

\[d_{\text{eff}}^\lambda = \sum_{j \in [3J/4]} \frac{n_j}{n_j + \lambda} = \Theta \left(\sum_{j \in [3J/4]} \frac{n\epsilon/k}{n\epsilon/k + n/k} \right) = \Theta(k) \]
Contribution 1: Tight Lower Bounds for KRR

Remarks

- Settles a variant of an open question of El Alaoui and Mahoney: is the effective statistical dimension a lower bound on the query complexity? (they consider an approximation guarantee on the statistical risk instead of the argmin)
- Techniques extend to any indicator kernel function, including all kernels that are a function of the inner product or Euclidean distance
- Lower bound is easily modified to an instance where the top d_{eff}^λ singular values scales as the regularization λ
Kernel k-means Clustering (KKMC)

- Kernel method applied to k-means clustering
- Objective: a partition of the data set into k clusters that minimizes the sum of squared distances to the nearest centroid
- For a feature map $\varphi : \mathcal{X} \rightarrow \mathcal{F}$, objective function is

$$
cost(C) := \sum_{j=1}^{k} \sum_{x \in C_j} \|\varphi(x) - \mu_j\|^2_{\mathcal{F}}
$$

$$
\mu_j := \frac{1}{|C_j|} \sum_{x \in C_j} \varphi(x)
$$
Contribution 2: Tight Lower Bounds for KKMC

Theorem (informal)

Any randomized algorithm computing a $(1 + \varepsilon)$-approximate KKMC solution with probability at least $2/3$ makes at least $\Omega(nk/\varepsilon)$ kernel queries.

- Effective against randomized and adaptive (data-dependent) algorithms
- Tight up to logarithmic factors
Contribution 2: Tight Lower Bounds for KKMC

- Similar techniques, hard distribution is sums of standard basis vectors

k blocks

$1/\varepsilon$ coordinates
Kernel k-means Clustering of Mixtures of Gaussians

- For input distributions encountered in practice, previous lower bound may be pessimistic.
- We show that for a mixture of k isotropic Gaussians, we can solve KKMC in only $\tilde{O}(n/\epsilon)$ kernel queries.
Contribution 3: Query-Efficient Algorithm for Mixtures of Gaussians

Theorem (informal)

Given a mixture of k Gaussians with mean separation $\tilde{O}(\sigma)$, there exists a randomized algorithm which returns a $(1 + \varepsilon)$-approximate k-means clustering solution reading $\tilde{O}(n/\varepsilon)$ kernel queries with probability at least $2/3$.
Contribution 3: Query-Efficient Algorithm for Mixtures of Gaussians

Proof (sketch)

- Learn the means of the Gaussians in $\text{poly}(k, 1/\varepsilon, d)$ samples (Regev and Vijayaraghavan, FOCS 2017)
- Use the learned means to identify the true means of $O(\log n/\varepsilon)$ Gaussians
- Subtract off Gaussians from the same mean from each other to obtain zero-mean Gaussians
- Use the zero-mean Gaussians to sketch the data set in $O(n \log n/\varepsilon)$ samples
- Cluster the sketched data set