Adaptive Antithetic Sampling for Variance Reduction

Hongyu Ren*, Shengjia Zhao*, Stefano Ermon

*equal contribution
Goal

Estimation of $\mu = \mathbb{E}_{p(x)}[f(x)]$ is ubiquitous in machine learning problems.
Goal

Estimation of $\mu = \mathbb{E}_{p(x)}[f(x)]$ is ubiquitous in machine learning problems.

Monte Carlo Estimation: $\mu \approx \frac{1}{2} (f(x_1) + f(x_2))$ \quad \text{x_1, x_2 \sim p(x)}$

- MC is unbiased: $\mathbb{E} \left[\frac{1}{2} (f(x_1) + f(x_2)) \right] = \mu$
- High variance
 Estimation can be far off with small sample size
Goal

Estimation of $\mu = \mathbb{E}_{p(x)}[f(x)]$ is ubiquitous in machine learning problems.

Monte Carlo Estimation: $\mu \approx \frac{1}{2} (f(x_1) + f(x_2))$

$x_1, x_2 \sim p(x)$

Trivial solution: use more samples!

Better solution: better sampling strategy than i.i.d.
Antithetic Sampling

Don’t sample i.i.d. \(x_1, x_2 \sim p(x_1)p(x_2) \)
Sample correlated distribution \(x_1, x_2 \sim q(x_1, x_2) \)

Unbiased if

\[
q(x_1) = p(x_1) \\
q(x_2) = p(x_2)
\]

Goal: minimize

\[
\text{Var}_{q(x_1, x_2)} \left[\frac{f(x_1) + f(x_2)}{2} \right]
\]
Example: Negative Sampling

\(q(x_1, x_2) \) defined by

1. Sample \(x_1 \sim p(x) \).
2. Pick \(x_2 = -x_1 \).
Example: Negative Sampling

$q(x_1, x_2)$ defined by

1. Sample $x_1 \sim p(x)$.
2. Pick $x_2 = -x_1$.

Best Case Example

$\frac{f(x_1) + f(x_2)}{2} = 0$

matches

$E_{p(x)}[f(x)] = 0$

$\text{Var}_{q(x_1, x_2)} \left[\frac{f(x_1) + f(x_2)}{2} \right] = 0$

no error for a sample size of 2!
Example: Negative Sampling

\(q(x_1, x_2) \) defined by

1. Sample \(x_1 \sim p(x) \).
2. Pick \(x_2 = -x_1 \).

Worst Case Example

\[f = x^2 \]

\[f(x_1) = f(x_2), \ x_2 \text{ redundant} \]

\[\text{Var}_{q(x_1,x_2)} \left[\frac{f(x_1)+f(x_2)}{2} \right] \text{ doubles!} \]
General Result

Question: is there an antithetic distribution that always works better than i.i.d.?

😊 Yes: sampling without replacement is always a tiny bit better.

😢 No Free Lunch (Theorem 1): no antithetic distribution works better than sampling without replacement for every function f.
Valid Distribution Set

\[Q_{\text{unbiased}} : \text{Set of distributions } q(x_1, x_2) \]
\[\text{that satisfy } q(x_1) = p(x_1), q(x_2) = p(x_2) \]
Variance of example functions

Pick this distribution

\[f_1 = x^3 \]

\[Q_{unbiased}: \text{Set of distributions } q(x_1, x_2) \text{ that satisfy } q(x_1) = p(x_1), q(x_2) = p(x_2) \]
\(f_2 = e^x + 2x \sin(x) \)

\[Q_{unbiased} : \text{Set of distributions } q(x_1, x_2) \text{ that satisfy } q(x_1) = p(x_1), q(x_2) = p(x_2) \]
Pick Good Distribution for a Class of Functions

\[F = \{ f_1, f_2, \ldots \} \]

\[Q_{\text{unbiased}}: \text{Set of distributions } q(x_1, x_2) \text{ that satisfy } q(x_1) = p(x_1), q(x_2) = p(x_2) \]
Pick Good Distribution for a class of functions

$q_{unbiased}$: Set of distributions $q(x_1, x_2)$ that satisfy $q(x_1) = p(x_1), q(x_2) = p(x_2)$

Training
Pick a good q for several functions

Generalization
Low variance for similar functions
Training Objective

$$\min_{q} \mathbb{E}_{f \sim \mathcal{F}} \left[\text{Var}_{q(x_1, x_2)} \left[\frac{f(x_1) + f(x_2)}{2} \right] \right]$$

s.t. $q(x_1, x_2) \in Q_{unbiased}$
Practical Training Algorithm

We design

1. Parameterization for $Q_{unbiased}$ via copulas.

2. A surrogate objective to optimize the variance.
Wasserstein GAN w/ gradient penalty

Importance Weighted Autoencoder

Our method VS negative sampling

Our method VS i.i.d. sampling

Log Likelihood Improvement (higher is better)

Conclusion

• Define a general family of (parameterized) unbiased antithetic distribution.
• Propose an optimization framework to learn the antithetic distribution based on the task at hand.
• Sampling from the resulting joint distribution reduces variance at negligible computation cost.

Welcome to our poster session for further discussions!
Thursday 6:30-9pm @ Pacific Ballroom #205