Metropolis-Hastings Generative Adversarial Networks

Ryan Turner, Jane Hung, Eric Frank, Yunus Saatci, Jason Yosinski

Poster #201

Uber AI
Typical GAN training
Typical GAN training

D tries to get here

G tries to get here
Typical GAN training
Typical GAN training

D tries to get here

G tries to get here
Typical GAN training

D tries to get here

G tries to get here
Typical GAN training ... gets stuck
MH-GAN helps you reach the star

D tries to get here

G tries to get here
MH-GAN helps you reach the star

- Wrap G and D to build better G'

GAN

\[x'_0, x'_1, \ldots, x'_K \]

MH-GAN

\[z_0, z_1, \ldots, z_K \]

Metropolis-Hastings Selector

\[D \]

\[x \]

D tries to get here

G tries to get here
MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]

MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]

MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]
MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]

MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]

MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]

MH recovers the true data distribution

“Mixture of Gaussians” dataset [1]
Motivation for Metropolis-Hastings

- Use MCMC *independence sampler*: sample p_D from G
- Given a perfect D and imperfect G, still obtain exact samples from true data distribution!
- Avoid densities in MCMC, just need *density ratios*:

$$D(x) = \frac{p_D(x)}{p_D(x) + p_G(x)}$$

$$\frac{p_D(x)}{p_G(x)} = \frac{D(x)}{1 - D(x)}$$
Metropolis-Hastings as a post-processing step for generators

\[
\frac{p_D}{p_G} = \frac{1}{D^{-1} - 1}
\]
\[
\alpha(x', x_k) = \min\left(1, \frac{D(x_k)^{-1} - 1}{D(x')^{-1} - 1}\right)
\]
MH recovers the correct score distribution
MH recovers the correct score distribution.
MH recovers the correct score distribution

Discriminator gives different scores to fakes

Score distribution now matches real data
Also... sample images
Progressive GAN (base)
Progressive GAN
(base)
Progressive GAN (base)

PGAN + DRS (calibrated)
Progressive GAN (base)

PGAN + DRS (calibrated)

PGAN + MH-GAN (calibrated)
Metropolis-Hastings GAN

Ryan Turner, Jane Hung, Eric Frank, Yunus Saatci, Jason Yosinski

Poster #201

https://github.com/uber-research/metropolis-hastings-gans
MH recovers the true data distribution

1) 1D mixture of 4 Gaussians, missing one mixture