Rotation Invariant Householder Parameterization for Bayesian PCA

Rajbir-Singh Nirwan, Nils Bertschinger
June 11, 2019
Outline

• Probabilistic PCA (PPCA)
• Non-identifiability issue of PPCA
• Conceptual solution to the problem
• Implementation
• Results
Probabilistic PCA

• Classical PCA
 Formulated as a projection from data space Y to a lower dimensional latent space X

 $Y \in \mathbb{R}^{N \times D} \rightarrow X \in \mathbb{R}^{N \times Q}$

 Latent space: maximizes variance of projected data, minimizes MSE
Probabilistic PCA

• Classical PCA
 Formulated as a projection from data space \(Y \) to a lower dimensional latent space \(X \)
 \[
 Y \in \mathbb{R}^{N \times D} \quad \rightarrow \quad X \in \mathbb{R}^{N \times Q}
 \]
 Latent space: maximizes variance of projected data, minimizes MSE

• Probabilistic PCA (PPCA)
 Viewed as a generative model, that maps the latent space \(X \) to the data space \(Y \)
 \[
 X \in \mathbb{R}^{N \times Q} \quad \rightarrow \quad Y \in \mathbb{R}^{N \times D}
 \]
 \[
 Y = XW^T + \epsilon
 \]
 \[
 X \sim \mathcal{N}(0, I), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)
 \]
 \[
 p(Y|W) = \prod_{n=1}^{N} \mathcal{N}(Y_{n,:}|0, WW^T + \sigma^2 I)
 \]
 \[
 WRR^T W^T = WW^T \quad \forall \; RR^T = I
 \]
Probabilistic PCA

• Classical PCA

Formulated as a projection from data space Y to a lower dimensional latent space X

$$Y \in \mathbb{R}^{N \times D} \rightarrow X \in \mathbb{R}^{N \times Q}$$

Latent space: maximizes variance of projected data, minimizes MSE

• Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space X to the data space Y

$$X \in \mathbb{R}^{N \times Q} \rightarrow Y \in \mathbb{R}^{N \times D}$$

$$Y = XW^T + \epsilon$$

$$X \sim \mathcal{N}(0, I), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

$$p(Y|W) = \prod_{n=1}^{N} \mathcal{N}(Y_n, |0, WW^T + \sigma^2 I)$$

$$WRR^TW^T = WW^T \quad \forall RR^T = I$$

• Optimization for $D=5$, $Q=2$
Probabilistic PCA

• Classical PCA

 Formulated as a projection from data space Y to a lower dimensional latent space X

 $$Y \in \mathbb{R}^{N \times D} \rightarrow X \in \mathbb{R}^{N \times Q}$$

 Latent space: maximizes variance of projected data, minimizes MSE

• Probabilistic PCA (PPCA)

 Viewed as a generative model, that maps the latent space X to the data space Y

 $$X \in \mathbb{R}^{N \times Q} \rightarrow Y \in \mathbb{R}^{N \times D}$$

 $$Y = XW^T + \epsilon$$

 $$X \sim \mathcal{N}(0, I), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

 $$p(Y|W) = \prod_{n=1}^{N} \mathcal{N}(Y_n; |0, WW^T + \sigma^2 I)$$

 $$WRR^TW^T = WW^T \quad \forall RR^T = I$$

• Optimization for D=5, Q=2
Probabilistic PCA

• Classical PCA
 Formulated as a projection from data space Y to a lower dimensional latent space X
 \[Y \in \mathbb{R}^{N \times D} \rightarrow X \in \mathbb{R}^{N \times Q} \]
 Latent space: maximizes variance of projected data, minimizes MSE

• Probabilistic PCA (PPCA)
 Viewed as a generative model, that maps the latent space X to the data space Y
 \[X \in \mathbb{R}^{N \times Q} \rightarrow Y \in \mathbb{R}^{N \times D} \]
 \[Y = XW^T + \epsilon \]
 \[X \sim \mathcal{N}(0, I), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I) \]
 \[p(Y|W) = \prod_{n=1}^{N} \mathcal{N}(Y_{n,:}|0, WW^T + \sigma^2 I) \]
 \[WRR^TW^T = WW^T \quad \forall RR^T = I \]

• Optimization for $D=5$, $Q=2$
Probabilistic PCA

• Classical PCA

Formulated as a projection from data space Y to a lower dimensional latent space X

$$Y \in \mathbb{R}^{N \times D} \rightarrow X \in \mathbb{R}^{N \times Q}$$

Latent space: maximizes variance of projected data, minimizes MSE

• Probabilistic PCA (PPCA)

Viewed as a generative model, that maps the latent space X to the data space Y

$$X \in \mathbb{R}^{N \times Q} \rightarrow Y \in \mathbb{R}^{N \times D}$$

$$Y = XW^T + \epsilon$$

$$X \sim \mathcal{N}(0, I), \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I)$$

$$p(Y|W) = \prod_{n=1}^{N} \mathcal{N}(Y_n; |0, WW^T + \sigma^2 I)$$

$WRR^T W^T = WW^T \quad \forall \ RR^T = I$

• Rotation invariant likelihood
Bayesian approach to PPCA

\[p(W|Y) = \frac{p(Y|W)p(W)}{p(Y)} \]

• If prior does not break the symmetry, posterior will be rotation invariant as well

• Sampling will be challenging, posterior averages are meaningless and the interpretation of the latent space is almost impossible
Bayesian approach to PPCA

\[p(W|Y) = \frac{p(Y|W)p(W)}{p(Y)} \]

- If prior does not break the symmetry, posterior will be rotation invariant as well

- Sampling will be challenging, posterior averages are meaningless and the interpretation of the latent space is almost impossible
Solution

• Find different parameterization of the model, such that the probabilistic model is not changed

Outline of procedure

• SVD of W
 \[
 WW^T = U \Sigma V^T (U \Sigma V^T)^T = U \Sigma^2 U^T
 \]

• Fix coordinate system
 \[V = I\]

• Specify correct prior
 \[p(U, \Sigma)\]

• Sample from
 \[p(U, \Sigma | Y)\]
Solution

• Find different parameterization of the model, such that the probabilistic model is not changed

Outline of procedure

• SVD of W
 \[WW^T = U\Sigma V^T (U\Sigma V^T)^T = U\Sigma^2 U^T \]
 \[V = I \]
• Specify correct prior
 \[p(U, \Sigma) \]
• Sample from
 \[p(U, \Sigma | Y) \]

\[W \sim \mathcal{N}(0, I) \quad \rightarrow \quad WW^T \text{ is Wishart distributed} \]
\[U \sim ? \quad \rightarrow \quad U\Sigma\Sigma^TU^T \text{ is Wishart distributed} \]
\[\Sigma \sim ? \]
Theory

• Since U, Σ is SVD of W and U, Σ^2 is eigenvalue decomposition of $WW^T \rightarrow U$ is eigenvector matrix

$$U \in \mathcal{V}_{Q,D} \quad \text{Stiefel manifold} \quad \mathcal{V}_{Q,D} = \{ U \in \mathbb{R}^{D \times Q} | U^T U = I \}$$

Eigenvectors of Wishart matrix are distributed uniformly in space of orthogonal matrices (Blai (2007), Uhlig (1994))

$\rightarrow U$ is uniformly distributed on the Stiefel manifold
Theory

• Since U, Σ is SVD of W and U, Σ^2 is eigenvalue decomposition of $WW^T \rightarrow U$ is eigenvector matrix

$$U \in \mathcal{V}_{Q,D} \quad \text{Stiefel manifold} \quad \mathcal{V}_{Q,D} = \{ U \in \mathbb{R}^{D \times Q} | U^T U = I \}$$

Eigenvectors of Wishart matrix are distributed uniformly in space of orthogonal matrices (Blai (2007), Uhlig (1994))

$\rightarrow U$ is uniformly distributed on the Stiefel manifold

• Square of ordered eigenvalue matrix Σ is distributed as (James & Lee (2014))

$$p(\lambda) = c e^{-\frac{1}{2} \sum_{q=1}^{Q} \lambda_q} \prod_{q=1}^{Q} \left(\frac{\lambda_q^{D-Q-1}}{2} \prod_{q'=q+1}^{Q} \left| \frac{\lambda_q - \lambda_{q'}}{2} \prod_{q'=q+1}^{Q} \sigma_{q'}^2 \right| \prod_{q=1}^{Q} 2\sigma_q \right)$$

$$p\left(\sigma_1, \ldots, \sigma_Q\right) = c e^{-\frac{1}{2} \sum_{q=1}^{Q} \sigma_q^2} \prod_{q=1}^{Q} \left(\frac{\sigma_q^{D-Q-1}}{2} \prod_{q'=q+1}^{Q} \left| \frac{\sigma_q^2 - \sigma_{q'}^2}{2} \right| \prod_{q=1}^{Q} 2\sigma_q \right)$$
Implementation

- Need:
 \[U \sim \text{uniform on Stiefel } \mathcal{V}_{Q,D} \]
 \[\Sigma \sim p(\Sigma) \leftarrow \text{easy, since we know the analytic exp for density} \]

Theorem 2 Let \(v_D, v_{D-1}, \ldots, v_1 \) be uniformly distributed on the unit spheres \(S^{D-1}, \ldots, S^0 \) respectively, where \(S^{n-1} \) is the unit sphere in \(\mathbb{R}^n \). Furthermore, let \(\tilde{H}_n(v_n) \) be the \(n \)-th Householder transformation as defined in equation (2.20)

The product

\[Q = H_D(v_D)H_{D-1}(v_{D-1}) \ldots H_1(v_1) \] (2.21)

is a random orthogonal matrix with distribution given by the Haar measure on \(O(D) \).

Mezzadri (2007)

How to uniformly sample \(U \) **on** \(\mathcal{V}_{Q,D} \)

for \(n = D : 1 \)

\[v_n \sim \text{uniform on } S^{n-1} \]

\[u_n = \frac{v_n + \text{sgn}(v_{n1}) \parallel v_n \parallel e_1}{\parallel v_n + \text{sgn}(v_{n1}) \parallel v_n \parallel e_1 \parallel} \]

\[\tilde{H}_n(v_n) = -\text{sgn}(v_{n1}) (I - 2u_nu_n^T) \]

\[H_n = \begin{pmatrix} I & 0 \\ 0 & H_n \end{pmatrix} \]

\[U = H_D(v_D)H_{D-1}(v_{D-1}) \ldots H_1(v_1) \]
Implementation

The full generative model for Bayesian PPCA:

\[v_D, \ldots, v_{D-Q+1} \sim \mathcal{N}(0, I) \]
\[\sigma \sim p(\sigma) \]
\[\mu \sim p(\mu) \]
\[U = \prod_{q=1}^{Q} H_{D-q+1}(v_{D-q+1}) \]
\[\Sigma = \text{diag}(\sigma) \]
\[W = U \Sigma \]
\[\sigma_{\text{noise}} \sim p(\sigma_{\text{noise}}) \]
\[Y \sim \prod_{n=1}^{N} \mathcal{N}(Y_n; |\mu, WW^T + \sigma_{\text{noise}}^2 I) \]
Results

Synthetic Dataset

• Construction

\[(N, D, Q) = (150, 5, 2)\]

\[X \sim \mathcal{N}(0, I) \in \mathbb{R}^{N \times Q}\]

\[U \sim \text{uniform on Stiefel } \mathcal{V}_{Q,D}\]

\[\epsilon \sim \mathcal{N}(0, 0.01) \in \mathbb{R}^{N \times D}\]

\[\Sigma = \text{diag } (\sigma_1, \sigma_2) = \text{diag } (3.0, 1.0)\]

\[W = U\Sigma \in \mathbb{R}^{D \times Q}\]

\[Y = XW^T + \epsilon\]

• Inference
Results

Breast Cancer Wisconsin Dataset \((N, D) = (569, 30)\)

- Bayesian PCA

- Advantages
 - Breaks the rotation symmetry without changing the probabilistic model
 - Enrichment of the classical PCA solution with uncertainty estimates
 - Decomposition of prior into rotation and principle variances
 - Allows to construct other priors without issues
 - Sparsity prior on principle variances without a-priori rotation preference
 - If desired a-priori rotation preference without affecting the variances
Extension to non-linear models

• GPLVM with the same rotation invariant problem

\[p(Y|X) = \prod_{d=1}^{D} \mathcal{N}(Y_{:,d}|\mu, K + \sigma^2 I) \]

\[K = XX^T, \quad K_{ij} = X_{i,:}^T X_{j,:} = k(X_{i,:}, X_{j,:}) \]

\[k_{SE}(x, x') = \sigma_{SE}^2 \exp\left(-0.5 \| x - x' \|_2^2 / l^2 \right) \]

• No rotation symmetry in the posterior for the suggested parameterization

• Different chains converge to different solutions due to increased model complexity
Conclusion

• Suggested new parameterization for W in PPCA, which uniquely identifies principle components even though the likelihood and the posterior are rotationally symmetric

• Showed how to set the prior on the new parameters such that the model is not changed compared to a standard Gaussian prior on W

• Provided an efficient implementation via Householder transformations (no Jacobian correction needed)

• New parameterization allows for other interpretable priors on rotation and principle variances

• Extended to non-linear models and successfully solved the rotation problem there as well
Thanks for your attention!

Supervisor: Prof. Dr. Nils Bertschinger
Funder: Dr. h. c. Helmut O. Maucher