Bayesian Joint Spike-and-Slab Graphical Lasso

Zehang Richard Li @ Yale Biostat

Joint work with Tyler H. McCormick (UW) and Samuel J. Clark (OSU)

\[p(x|\mu, \Omega) = \text{Normal}(\mu, \Omega^{-1}) \]

\[\Omega = \begin{pmatrix}
\omega_{11} & 0 & \omega_{13} & 0 \\
0 & \omega_{22} & \omega_{23} & 0 \\
\omega_{33} & \omega_{34} & \omega_{44}
\end{pmatrix} \]
Contributions

- A new graphical lasso type penalty for learning multiple related graphs.
- Joint graphical lasso (Danaher et al., 2014)
- Reducing bias from over-shrinkage and automatic tuning parameter selection.
- EM algorithm for graphical model (Li and McCormick, 2019)
A new graphical lasso type penalty for learning multiple related graphs.

Joint graphical lasso (Danaher et al., 2014)
A new graphical lasso type penalty for learning **multiple related graphs**.

- Joint graphical lasso (Danaher et al., 2014)
- **Reducing bias** from over-shrinkage and automatic tuning parameter selection.
- EM algorithm for graphical model (Li and McCormick, 2019)
Doubly spike-and-slab joint graphical lasso priors

\[
pen(\{\Omega\}) = \frac{\lambda_0}{2} \sum_g \sum_j |\omega^{(g)}_{jj}| + \lambda_1 \sum_g \sum_{j<k} \frac{|\omega^{(g)}_{jk}|}{\nu_{\delta_{jk}}} +
\]

spike-and-slab mixture penalties
Doubly spike-and-slab joint graphical lasso priors

\[
\text{pen}(\{\Omega\}) = \frac{\lambda_0}{2} \sum_g \sum_j |\omega^{(g)}_{jj}| + \lambda_1 \sum_g \sum_{j<k} \frac{|\omega^{(g)}_{jk}|}{\nu_{\delta_{jk}}} + \lambda_2 \sum_{j<k} \frac{\tilde{\text{pen}}(\omega_{jk})}{\nu_{\xi^*_{jk}}}
\]

spike-and-slab mixture penalties

Gaussian mixture

Laplace mixture

similarity
Doubly spike-and-slab joint graphical lasso priors

![Graphical Representation]

Gaussian mixture

Laplace mixture

Spike-and-slab mixture penalties

\[
pen(\{\Omega\}) = \frac{\lambda_0}{2} \sum_{g} \sum_{j} |\omega_{jj}^{(g)}| + \lambda_1 \sum_{g} \sum_{j<k} |\omega_{jk}^{(g)}| + \lambda_2 \sum_{j<k} \tilde{pen}(\omega_{jk}) - \log(p(\delta, \xi))
\]

Fully Bayesian characterization via scale mixture of normal priors
Fully Bayesian treatment can be expensive. Let’s just find the posterior mode using EM algorithm (Ročková and George, 2014).
Fully Bayesian treatment can be expensive. Let’s just find the posterior mode using EM algorithm (Ročková and George, 2014).

E-step:
- Calculate posterior inclusion probabilities: $p^*_{\delta_{jk}, \xi_{jk}}(j, k)$.
- Impute missing values.
Fully Bayesian treatment can be expensive. Let’s just find the posterior mode using EM algorithm (Ročková and George, 2014).

E-step:
- Calculate posterior inclusion probabilities: $p^*_{\delta,\xi}(j, k)$.
- Impute missing values.

M-step:
- Solve the joint graphical lasso problem with ADMM

$$\{\hat{\Omega}\} = \arg\max_{\Omega}\left\{ \ldots - \sum_{j<k} \lambda_1 \left(\frac{p^*_{0,0}(j, k)}{v_0} + \frac{1 - p^*_{0,0}(j, k)}{v_1} \right) \sum_{g} |\omega_{jk}^{(g)}| \\
- \sum_{j<k} \lambda_2 \left(\frac{1 - p^*_{1,1}(j, k)}{v_0} + \frac{p^*_{1,1}(j, k)}{v_1} \right) \text{pen}(\omega_{jk}) \right\}$$

- Maximize over π_δ and π_ξ have closed form solutions
Dynamic posterior exploration

Class 1

\[n_1 = n_2 = 150, \, p = 100 \]
Dynamic posterior exploration

Class 1

Class 2

Class 1 : F-norm=6.8

Class 2 : F-norm=23.8

Class 1

Class 2

Class 1 : F-norm=1.8

Class 2 : F-norm=6.6

\[n_1 = n_2 = 150, \; p = 100 \]
Verbal Autopsy and more...come to poster tonight!

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Questionnaire item</th>
</tr>
</thead>
<tbody>
<tr>
<td>belly pain</td>
<td>For how long before death did [name] have belly pain? [days]</td>
</tr>
<tr>
<td>protruding belly</td>
<td>For how long before death did [name] have a protruding belly? [days]</td>
</tr>
<tr>
<td>mass belly</td>
<td>For how long before death did [name] have a mass in the belly [days]</td>
</tr>
<tr>
<td>headaches</td>
<td>For how long before death did [name] have headaches? [days]</td>
</tr>
<tr>
<td>stiff neck</td>
<td>For how long before death did [name] have stiff neck? [days]</td>
</tr>
<tr>
<td>unconsciousness</td>
<td>For how long did the period of loss of consciousness last? [days]</td>
</tr>
</tbody>
</table>

Get in touch? @zrichardli
References

