Dirichlet Simplex Nest and Geometric Inference

Mikhail Yurochkin1,2,*
Aritra Guha3,*, Yuekai Sun3, XuanLong Nguyen3

IBM Research1, MIT-IBM Watson AI Lab2, University of Michigan3
* authors contributed equally

ICML 2019, June 11th
Dirichlet Simplex Nest (DSN)

The parent nest: $\mathcal{B} = \text{Conv}(\beta_1, \ldots, \beta_K)$
Dirichlet Simplex Nest (DSN)

The parent nest: $\mathcal{B} = \text{Conv}(\beta_1, \ldots, \beta_K)$

Admixture weights: $\theta_i \sim \text{Dir}_K(\alpha) \in \Delta^{K-1}$
Dirichlet Simplex Nest (DSN)

The parent nest: $\mathcal{B} = \text{Conv}(\beta_1, \ldots, \beta_K)$

Admixture weights: $\theta_i \sim \text{Dir}_K(\alpha) \in \Delta^{K-1}$

Offspring i is born: $\mu_i = \sum_{k=1}^{K} \theta_{ik} \beta_k \in \mathbb{R}^D$
Dirichlet Simplex Nest (DSN)

The parent nest: \(\mathcal{B} = \text{Conv}(\beta_1, \ldots, \beta_K) \)

Admixture weights: \(\theta_i \sim \text{Dir}_K(\alpha) \in \Delta^{K-1} \)

Offspring \(i \) is born: \(\mu_i = \sum_{k=1}^{K} \theta_{ik} \beta_k \in \mathbb{R}^D \)

Offspring \(i \) leaves the nest:

\(x_i | \mu_i \sim F(\cdot | \mu_i) \in \mathbb{R}^D \) s.t. \(\mathbb{E}[x_i | \mu_i] = \mu_i \)
Dirichlet Simplex Nest (DSN)

Dirichlet Simplex Nest examples:

- LDA: $x_i | \mu_i \sim \text{Multinomial}(\mu_i)$ (Blei et al. (2003))
- Gaussian: $x_i | \mu_i \sim \mathcal{N}(\mu_i, \Sigma)$ (Schmidt et al. (2009))
- Poisson-Gamma: $x_{i,d} | \mu_{i,d} \overset{\text{iid}}{\sim} \text{Pois}(\mu_{i,d})$ (Cemgil (2009))
Centroidal Voronoi tessellation (CVT)

Du et al (1999)

- open set Ω
- distance $d : \Omega \times \Omega \rightarrow \mathbb{R}_+$
- density $\rho : \Omega \rightarrow \mathbb{R}_+$

For $\{z_1, \ldots, z_K\} \subset \bar{\Omega}$, the Voronoi region corresponding to z_k is

$$V_k = \{x \in \Omega : d(x, z_k) < d(x, z_l) \text{ for any } l \neq k\}.$$

$\star \{V_1, \ldots, V_K\}$ is a Voronoi tessellation of Ω

\star z_k’s are the generators of this Voronoi tessellation

$\{V_1, \ldots, V_K\}$ is a CVT iff the z_k’s satisfy

$$z_k = \frac{\int_{V_k} x\rho(x)dx}{\int_{V_k} \rho(x)dx}.$$
Variational characterization of CVT’s

• define the cost function

\[J(z_1, \ldots, z_K) = \sum_{k=1}^{K} \int_{V_k} d(x, z_k)^2 \rho(x) \, dx, \]

where the \(V_k \)'s are Voronoi regions corresponding to the \(z_k \)'s,

• If \((z_1, \ldots, z_K) \in \text{argmin } J\), then the corresponding VT is a CVT.

• estimate \((z_1, \ldots, z_K)\) by minimizing empirical counterpart of \(J \):

\[\frac{1}{n} \sum_{k=1}^{K} \sum_{i=1}^{n} d(x_i, z_k)^2 1\{x_i \in V_k\}, \quad x_i \overset{iid}{\sim} \rho \]

• If \(d \) is Euclidean distance, this is the \(K \)-means cost function.
CVT of equilateral simplices

- Ω is a scaled, rotated, translated copy of Δ^{K-1}
- equipped with distance $d(x_1, x_2) = \|x_1 - x_2\|_2$
- ρ is $\text{Dir}_K(\alpha 1_K)$ density “transported” to Ω
- **fact:** The CVT generators z_k’s are on the line segments between centroid μ of the simplex and its extreme points.
- **idea:** estimate extreme points by estimating μ and z_k’s and searching along ray from $\hat{\mu}$ to \hat{z}_k (Geometric Dirichlet Means (GDM), Y. and Nguyen (2016))
Toy example: Gaussian DSN with $K = D = 3$

Figure: GDM with equilateral \mathcal{B}, $\alpha = 2.5$
Toy example: Gaussian DSN with $K = D = 3$

Figure: GDM with general B, $\alpha = 0.3$
Toy example: Gaussian DSN with $K = D = 3$

Figure: GDM with general \mathcal{B}, $\alpha = 2.5$
Toy example: Gaussian DSN with $K = D = 3$

Figure: Xray (Kumar et al., 2013) - separability is not satisfied
Toy example: Gaussian DSN with $K = D = 3$

Figure: Stan-HMC (Carpenter et al., 2017) - too slow (10min)
Estimating extreme points of non-equilateral simplices

- **idea:** transform non-equilateral simplex to equilateral simplex
- map from equilateral to non-equilateral simplex is the linear map B^T
- CVT centroids in $\| \cdot \|_{(BB^T)^\dagger}$-norm are images of CVT generators of Δ^{K-1} under B^T (for any concentration parameter $\alpha > 0$)
- K-means clustering the x_i’s in the $\| \cdot \|_{(BB^T)^\dagger}$-norm is equivalent to K-means clustering the (left) singular vectors of $\bar{X} = X - 1_n \hat{\mu}^T$
Voronoi Latent Admixture (VLAD)

inputs: \(x_1, \ldots, x_n \in \mathbb{R}^D \), extension size \(\gamma > 0 \)

outputs: \(\hat{\beta}_1, \ldots, \hat{\beta}_K \in \mathbb{R}^D \)

1a. \(\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \)
1b. \(\bar{x}_i \leftarrow x_i - \hat{\mu} \)

2. compute top \(K \) singular factors of centered data matrix: \(\bar{X} \approx U \Lambda V^T \)

3. \((\hat{w}_1, \ldots, \hat{w}_K) \leftarrow K\text{-means}(u_1, \ldots, u_n), u_i \in \mathbb{R}^K \) is the \(i \)-th row of \(U \)

4. \(\hat{z}_k \leftarrow \hat{\mu} + \Lambda \hat{w}_k \)

5. \(\hat{\beta}_k \leftarrow \hat{\mu} + \gamma (\hat{z}_k - \hat{\mu}) \)
Toy example: Gaussian DSN with $K = D = 3$

Figure: Voronoi Latent Admixture (VLAD), under 1s
Choosing extension size γ

- **Fact:** exact $\gamma = \frac{\|\beta_k - \mu\|^2}{\|z_k - \mu\|^2}$ depends only on the concentration parameter α (and K). It does not depend on the geometry of the simplex.
- Choosing extension size γ is equivalent to estimating concentration parameter α.
- Tabulate $\gamma(\alpha)$ for all $\alpha > 0$ in a particular simplex (e.g., Δ^{K-1}) by Monte Carlo.
- Estimate α by a method of moments approach:
 $$\hat{\alpha} = \arg\min\{\|\frac{\hat{B}(\gamma(\alpha))(I_K - \frac{1}{K}1_K1_K^T)\hat{B}(\gamma(\alpha))^T}{K(K\alpha + 1)} - \hat{\Sigma}\| : \alpha > 0\}$$

 - $\hat{B}(\gamma) = 1_K\hat{\mu} + \gamma(\alpha)(\hat{Z} - 1_K\hat{\mu}^T)$
 - $\frac{I_K - \frac{1}{K}1_K1_K^T}{K(K\alpha + 1)}$ is the covariance matrix of a $\text{Dir}_K(\alpha1_K)$ random vector.
 - $\hat{\Sigma}$ is the sample covariance matrix of the x_i's.
Estimation error of VLAD

- **Pollard’s condition**: the noiseless CVT cost function

\[
\sum_{k=1}^{K} \int_{V_k} \text{Dirichlet}(\theta; \alpha_{1_K}) \| B^T \theta - z_k \|_2^2 d\theta
\]

is \(\lambda \)-strongly convex

- quantify the noise level by \(\sigma^2 := \sup \{ \| \text{Cov}[x_i | \theta_i] \|_2 : \theta_i \in \Delta^{K-1} \} \)

- there is a permutation \(\pi \) of \([K]\) such that

\[
\|(\hat{\beta}_{\pi(1)}, \ldots, \hat{\beta}_{\pi(K)}) - (\beta_1, \ldots, \beta_K)\|_2 \leq O\left(\frac{\sigma^{1/4}}{\sqrt{\lambda}}\right) + O_P\left(\frac{1}{\sqrt{n}}\right)
\]
Simulations: varying DSN geometry

- $\alpha = 2, \ D = 500/2000, \ K = 10, \ n = 10k$
- $\beta_k \sim \mathcal{N}(0, K)/\text{Dir}_D(0.1)$ and scaled towards mean by $c_k \sim \text{Unif}(c_{\text{min}}, 1)$
- small $c_{\text{min}} \rightarrow$ more DSN skewness \rightarrow harder problem

![Figure: Gaussian data](image1)

![Figure: Multinomial data (LDA)](image2)
Simulations: varying concentration parameter α

- varying α, $D = 500/2000$, $K = 10$, $n = 10k$
- $\beta_k \sim \mathcal{N}(0, K)/\text{Dir}_D(0.1)$ and scaled towards mean by $c_k \sim \text{Unif}(0.5, 1)$
- large $\alpha \rightarrow$ non-separable data \rightarrow harder problem

Figure: Gaussian data

- Gaussian likelihood

Figure: Multinomial data (LDA)

- Multinomial likelihood
Factor analysis of stock data

- $D = 55$ stocks
- $n = 3k$ days
- 400 data points left out for validation
- VLAD factors
 - Growth component related to banks (e.g., Bank of America, Wells Fargo)
 - Stocks of fuel companies (Valero Energy, Chevron) are inversely related to defense contractors (Boeing, Raytheon)

<table>
<thead>
<tr>
<th></th>
<th>Residual norm</th>
<th>Volume</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAD</td>
<td>0.300</td>
<td>0.14</td>
<td>1 sec</td>
</tr>
<tr>
<td>GDM</td>
<td>0.294</td>
<td>1499</td>
<td>1 sec</td>
</tr>
<tr>
<td>HMC</td>
<td>0.299</td>
<td>1.95</td>
<td>10 min</td>
</tr>
<tr>
<td>MVES</td>
<td>0.287</td>
<td>5.39×10^9</td>
<td>3 min</td>
</tr>
<tr>
<td>SPA</td>
<td>0.392</td>
<td>3.31×10^7</td>
<td>1sec</td>
</tr>
</tbody>
</table>
Topic discovery in New York Times corpus

- $D = 5320$ words in vocabulary
- $n \approx 100k$ articles
- 25k articles left out for perplexity evaluation
- VLAD topics
 - ballot al-gore votes election recount florida voter court vote counties count county board hand bush george-bush official republican counted lawyer
 - cup sugar minutes cream butter teaspoon tablespoon chocolate egg pan add bowl mixture flour milk oven baking water serving cake

<table>
<thead>
<tr>
<th></th>
<th>Perplexity</th>
<th>Coherence</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAD</td>
<td>1767</td>
<td>0.86</td>
<td>6 min</td>
</tr>
<tr>
<td>GDM</td>
<td>1777</td>
<td>0.88</td>
<td>30 min</td>
</tr>
<tr>
<td>Gibbs</td>
<td>1520</td>
<td>0.80</td>
<td>5.3 hrs</td>
</tr>
<tr>
<td>RecoverKL</td>
<td>2365</td>
<td>0.70</td>
<td>17 min</td>
</tr>
<tr>
<td>SVI</td>
<td>1669</td>
<td>0.81</td>
<td>40 min</td>
</tr>
</tbody>
</table>
Open problem: asymmetric concentration parameter α

Figure: VLAD, $\alpha = (0.5, 1.5, 2.5)$
THANK YOU!
Please come to poster #230
Questions?