A Kernel Theory of Modern Data Augmentation

Tri Dao, Albert Gu, Alex Ratner, Virginia Smith, Chris De Sa, Chris Ré
Data augmentation is important to accuracy...
Data augmentation is important to accuracy...

3.7 pt. average gain across top ten CIFAR-10 models
Data augmentation is important to accuracy...

3.7 pt. average gain across top ten CIFAR-10 models
13.9 pt. average gain for CIFAR-100
Data augmentation is important to accuracy...

3.7 pt. average gain across top ten CIFAR-10 models
13.9 pt. average gain for CIFAR-100

A form of weak supervision: expresses domain knowledge (invariance)
... but is not well understood
... but is not well understood

How does data augmentation affect the model?

- Learning process
- Parameters and decision surface
Augmentation as sequence modeling

- TANDA [Ratner et al., 2017]
- AutoAugment [Cubuk et al., 2018]
Augmentation as sequence modeling

- TANDA [Ratner et al., 2017]
- AutoAugment [Cubuk et al., 2018]

Model augmentation as a Markov chain
Augmentation as kernels

Base classifier: k-nearest neighbors + Data augmentation = Asymptotic kernel classifier
Effects of data augmentation on kernel classifiers
Effects of data augmentation on kernel classifiers

Invariance
Effects of data augmentation on kernel classifiers

Invariance

Regularization
Effects of data augmentation on kernel classifiers

Invariance

Regularization

Practical utility
Effects of data augmentation on kernel classifiers

Invariance

Regularization

Practical utility

speeding up training
Effects of data augmentation on kernel classifiers

Invariance

Regularization

Practical utility

speeding up training

as a diagnostic
Model of data augmentation: kernel classifier

Non-augmented:

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} \ell(w^\top \phi(x_i))
\]

- **Loss function**
- **Feature map**
Model of data augmentation: kernel classifier

Non-augmented:
\[
\min_w \frac{1}{n} \sum_{i=1}^{n} \ell(w^\top \phi(x_i))
\]

Augmented:
\[
\min_w \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z_i \sim T(x_i)} \ell(w^\top \phi(z_i))
\]
Data augmentation effects

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z_i \sim T(x_i)} \ell(w^\top \phi(z_i)) \approx \frac{1}{n} \sum_{i=1}^{n} \ell(w^\top \mathbb{E}_{z_i \sim T(x_i)} \phi(z_i))
\]

Average of augmented features (i.e. kernel mean embedding)
Data augmentation effects

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z_i \sim T(x_i)} \ell(w^\top \phi(z_i)) \approx \frac{1}{n} \sum_{i=1}^{n} \ell(w^\top \mathbb{E}_{z_i \sim T(x_i)} \phi(z_i))$$

1^{st} order effect: induces invariance by feature averaging

Average of augmented features (i.e. kernel mean embedding)
Data augmentation effects

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{z_i \sim T(x_i)} \ell(w^\top \phi(z_i)) \approx \frac{1}{n} \sum_{i=1}^{n} \ell(w^\top \mathbb{E}_{z_i \sim T(x_i)} \phi(z_i))
\]

1st order effect: induces invariance by feature averaging

2nd order effect: reduces model complexity via a data-dependent regularization

Average of augmented features (i.e. kernel mean embedding)
A diagnostic: kernel alignment metric

Averaged features: \[\psi(x) = E_{z \sim T(x)} \phi(z) \]

Kernel target alignment [Cristianini et al., 2002]:

how well separated are features from different classes
A diagnostic: kernel alignment metric

![Graph showing kernel alignment metrics for RBF Kernel and LeNet models on MNIST dataset.](image-url)
A diagnostic: kernel alignment metric

Kernel alignment correlates with accuracy.
Summary

• Data augmentation + k-NN = asymptotic kernel classifier.

• Data augmentation induces invariance and regularizes.

• Application in speeding up training and diagnostics.

Tri Dao
trid@stanford.edu

Poster #227 on Tuesday Jun 11th at 6:30pm