Rehashing Kernel Evaluation in High Dimensions

Paris Siminelakis*
Ph.D. Candidate

Kexin Rong*, Peter Bailis, Moses Charikar, Phillip Levis
(Stanford University)

ICML © Long Beach, California
June 11, 2019

* equal contribution.
Kernel Density Function

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \ k : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+, \ u \geq 0, \ \text{query point } q \]

\[\text{KDF}^u_P(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]
Kernel Density Function

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \quad k : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+, \quad u \geq 0, \quad \text{query point } q \]

\[\text{KDF}_P^u(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]
Kernel Density Function

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \quad k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \quad u \geq 0, \quad \text{query point } q \]

\[\text{KDF}^u_P(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]
Kernel Density Function

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \quad k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \quad u \geq 0, \quad \text{query point } q \]

\[\text{KDF}_P(q) = \sum_{i=1}^{n} \left(\frac{1}{n} \right) k(x_i, q) \]
Kernel Density Evaluation

\[P = \{ x_1, \ldots, x_n \} \subset \mathbb{R}^d, \quad k : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+, \quad u \geq 0, \text{ query point } q \]

\[\text{KDF}^u_P(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]

Where is it used?

1. Non-parametric density estimation \(\text{KDF}^u_P(q) \)
2. Kernel methods \(f(x) = \sum_i \alpha_i \phi(\|x - x_i\|) \)
3. Comparing point sets (distributions) with “Kernel Distance”
Kernel Density Evaluation

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \quad k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \ u \geq 0, \ \text{query point } q \]

\[\text{KDF}^u_P(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]

Where is it used?

1. Non-parametric density estimation \(\text{KDF}_P(q) \)
2. Kernel methods \(f(x) = \sum \alpha_i \phi(\|x - x_i\|) \)
3. Comparing point sets (distributions) with “Kernel Distance”
Kernel Density Evaluation

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \quad k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \quad u \geq 0, \quad \text{query point } q \]

\[\text{KDF}^u_P(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]

Where is it used?

1. Non-parametric density estimation \(\text{KDF}_P(q) \)
2. Kernel methods \(f(x) = \sum_i \alpha_i \phi(\|x - x_i\|) \)
3. Comparing point sets (distributions) with “Kernel Distance”
Kernel Density Evaluation

\[P = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d, \ k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \ u \geq 0, \ \text{query point} \ q \]

\[KDF^u_P(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]

Where is it used?

1. Non-parametric density estimation \(KDF_P(q) \)
2. Kernel methods \(f(x) = \sum_i \alpha_i \phi(\|x - x_i\|) \)
3. Comparing point sets (distributions) with “Kernel Distance”
Kernel Density Evaluation

\[P = \{ x_1, \ldots, x_n \} \subset \mathbb{R}^d, \ k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \ u \geq 0, \ \text{query point } q \]

\[\text{KDF}_P^u(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]

Where is it used?

1. Non-parametric density estimation \(\text{KDF}_P(q) \)
2. Kernel methods \(f(x) = \sum \alpha_i \phi(\|x - x_i\|) \)
3. Comparing point sets (distributions) with “Kernel Distance”

Evaluating at a single point requires \(O(n) \)
Kernel Density Evaluation

\[P = \{ x_1, \ldots, x_n \} \subset \mathbb{R}^d, \ k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+, \ u \geq 0, \ \text{query point } q \]

\[\text{KDF}_{P}^{u}(q) = \sum_{i=1}^{n} u_i k(x_i, q) \]

Where is it used?

1. Non-parametric density estimation \(\text{KDF}_{P}^{u}(q) \)
2. Kernel methods \(f(x) = \sum_i \alpha_i \phi(\|x - x_i\|) \)
3. Comparing point sets (distributions) with “Kernel Distance”

How fast can we approximate \(\text{KDF} \)?
$P \subset \mathbb{R}^d$, $\epsilon > 0 \implies (1 \pm \epsilon)$-approx to $\mu := \text{KDF}_P(q)$ for any $q \in \mathbb{R}^d$
Methods for Fast Kernel Evaluation

\[P \subset \mathbb{R}^d, \epsilon > 0 \Rightarrow (1 \pm \epsilon)\text{-approx} \text{ to } \mu := \text{KDF}_P(q) \text{ for any } q \in \mathbb{R}^d \]

Space Partitions
\[\log(1/\mu \epsilon)^{O(d)} \]

- FMM
 [Greengard, Rokhlin’87]
- Dual-Tree [Lee, Gray, Moore’06]
- FIG-Tree
 [Moriarou et al. NeurIPS’09]

Slow in high dim
$P \subset \mathbb{R}^d$, $\epsilon > 0 \Rightarrow (1 \pm \epsilon)$-approx to $\mu := \text{KDF}_P(q)$ for any $q \in \mathbb{R}^d$

Space Partitions

$log(1/\mu \epsilon)^{O(d)}$

Slow in high dim
Methods for Fast Kernel Evaluation

\[P \subset \mathbb{R}^d, \epsilon > 0 \Rightarrow (1 \pm \epsilon)\text{-approx to } \mu := \text{KDF}_P(q) \text{ for any } q \in \mathbb{R}^d \]

Space Partitions

\[\log(1/\mu\epsilon)^{O(d)} \]

Random Sampling

\[1/\mu\epsilon^2 \]

Slow in high dim

Linear in 1/\mu
Methods for Fast Kernel Evaluation

\[P \subset \mathbb{R}^d, \epsilon > 0 \Rightarrow (1 \pm \epsilon)-\text{approx to } \mu := \text{KDF}_P(q) \text{ for any } q \in \mathbb{R}^d \]

Space Partitions
\[\log(1/\mu \epsilon)^{O(d)} \]

Hashing
\[O(1/\sqrt{\mu \epsilon^2}) \]
- Hashing-Based-Estimators
 - [Charikar, S’17]
- Similar idea:
 - Locality Sensitive Samplers
 - [Spring, Shrivastava ’17]

Random Sampling
\[1/\mu \epsilon^2 \]

Slow in high dim

Sub-linear in \(1/\mu\)

Linear in \(1/\mu\)
Methods for Fast Kernel Evaluation

\[P \subset \mathbb{R}^d, \, \epsilon > 0 \Rightarrow (1 \pm \epsilon)\text{-approx to } \mu := \text{KDF}_P(q) \text{ for any } q \in \mathbb{R}^d \]

- **Space Partitions**
 \[\log(1/\mu\epsilon)^O(d) \]
 - Slow in high dim

- **Hashing**
 \[O(1/\sqrt{\mu\epsilon^2}) \]
 - Sub-linear in \(1/\mu \)

- **Random Sampling**
 \[1/\mu\epsilon^2 \]
 - Linear in \(1/\mu \)

- **Importance Sampling via Randomized Space Partitions**
Randomized Space Partitions

Distribution \mathcal{H} over partitions $h : \mathbb{R}^d \rightarrow [M]$
Randomized Space Partitions

Distribution \mathcal{H} over partitions $h : \mathbb{R}^d \rightarrow [M]$
Locality Sensitive Hashing

Partitions \mathcal{H} such $\mathbb{P}_{h \sim \mathcal{H}}[h(x) = h(y)] = p(\|x - y\|)$

Euclidean LSH [Datar, Immorlica, Indyk, Mirrokni’04]

Concatenate k hashes $p^k(\|x - y\|)$
Hashing-Based-Estimators

[Charikar, S. FOCS’17]

- **Preprocess:** Sample $h_1, \ldots, h_m \sim \mathcal{H}$ and evaluate on P
- **Query:** $H_t(q)$ hash-bucket for q in table t
Hashing-Based-Estimators

[Charikar, S. FOCS’17]

- **Preprocess:** Sample $h_1, \ldots, h_m \sim \mathcal{H}$ and evaluate on P
- **Query:** $H_t(q)$ hash-bucket for q in table t
Hashing-Based-Estimators

[Charikar, S. FOCS’17]

- **Preprocess:** Sample $h_1, \ldots, h_m \sim \mathcal{H}$ and evaluate on P
- **Query:** $H_t(q)$ hash-bucket for q in table t
Hashing-Based-Estimators

[Charikar, S. FOCS’17]

- **Preprocess**: Sample $h_1, \ldots, h_m \sim \mathcal{H}$ and evaluate on P
- **Query**: $H_t(q)$ hash-bucket for q in table t

- **Estimator**: Sample random point X_t from $H_t(q)$ and return:

$$Z_m = \frac{1}{m} \sum_{t=1}^{m} \frac{1}{n} \frac{k(X_t, q)}{p(X_t, q) / |H_t(q)|}$$
Hashing-Based-Estimators

[Charikar, S. FOCS’17]

- **Preprocess:** Sample $h_1, \ldots, h_m \sim \mathcal{H}$ and evaluate on P
- **Query:** $H_t(q)$ hash-bucket for q in table t

- **Estimator:** Sample random point X_t from $H_t(q)$ and return:

$$Z_m = \frac{1}{m} \sum_{t=1}^{m} \frac{1}{n} \frac{k(X_t, q)}{p(X_t, q)/|H_t(q)|}$$

How many samples m? which LSH?
Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]

For certain kernels HBE solves the kernel evaluation problem for $\mu \geq \tau$ using $O(1/\sqrt{\mu \epsilon^2})$ samples and $O(n/\sqrt{\tau \epsilon^2})$ space.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>LSH</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^{-|x-y|^2}$</td>
<td>Ball Carving [Andoni, Indyk’06]</td>
<td>$e^{\tilde{O}(\log^{2/3}(n))}$</td>
</tr>
<tr>
<td>$e^{-|x-y|}$</td>
<td>Euclidean [Datar et al’04]</td>
<td>\sqrt{e}</td>
</tr>
<tr>
<td>$\frac{1}{1+|x-y|^t_2}$</td>
<td>Euclidean [Datar et al’04]</td>
<td>$3^{t/2}$</td>
</tr>
</tbody>
</table>
Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]
For certain kernels HBE solves the kernel evaluation problem for $\mu \geq \tau$ using $O(1/\sqrt{\mu} \epsilon^2)$ samples and $O(n/\sqrt{\tau} \epsilon^2)$ space.

Practical Limitations:
1. **Super-linear** Space \Rightarrow Not practical for massive datasets
2. Uses Adaptive procedure to estim. number of samples: \Rightarrow large-constant + stringent requirements on hash functions.
3. Gaussian kernel Ball-Carving LSH very slow $e^{\tilde{O}(\log^2(n))}$
Theorem [Charikar, S. FOCS’17]

For certain kernels HBE solves the kernel evaluation problem for \(\mu \geq \tau \) using \(O(\frac{1}{\sqrt{\mu} \epsilon^2}) \) samples and \(O(n/\sqrt{\tau \epsilon^2}) \) space.

Practical Limitations:

1. Super-linear Space \(\Rightarrow \) Not practical for massive datasets
2. Uses Adaptive procedure to estim. number of samples:
 \(\Rightarrow \) large-constant + stringent requirements on hash functions.
3. Gaussian kernel Ball-Carving LSH very slow \(e^{\tilde{O}(\log^{\frac{3}{2}}(n))} \)
Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]

For certain kernels HBE solves the kernel evaluation problem for $\mu \geq \tau$ using $O(1/\sqrt{\mu\epsilon^2})$ samples and $O(n/\sqrt{\tau\epsilon^2})$ space.

Practical Limitations:

1. Super-linear Space ⇒ Not practical for massive datasets
2. Uses Adaptive procedure to estim. number of samples: ⇒ large-constant + stringent requirements on hash functions.
3. Gaussian kernel Ball-Carving LSH very slow $e^{\tilde{O}(\log^{3/2}(n))}$
Hashing-Based-Estimators have Practical Limitations

Theorem [Charikar, S. FOCS’17]
For certain kernels HBE solves the kernel evaluation problem for $\mu \geq \tau$ using $O\left(1/\sqrt{\mu \epsilon^2}\right)$ samples and $O\left(n/\sqrt{\tau \epsilon^2}\right)$ space.

Practical Limitations:

1. Super-linear Space \Rightarrow Not practical for massive datasets
2. Uses Adaptive procedure to estim. number of samples:
 \Rightarrow large-constant $+$ stringent requirements on hash functions.
3. Gaussian kernel Ball-Carving LSH very slow $e^{\tilde{O}\left(\log^{\frac{2}{3}}(n)\right)}$

Q: Practical HBE $+$ preserve theoretical guarantees?
Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:

1. super-linear space!
2. Adaptive procedure has large constant overhead.
3. Gaussian Kernel Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:

1. Sketching (sub-linear space)
2. Improved Adaptive procedure + New Analysis
3. Practical HBE for Gaussian Kernel via Euclidean LSH
Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:
1. super-linear space!
2. Adaptive procedure has large constant overhead.
3. Gaussian Kernel Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:
1. Sketching (sub-linear space)
2. Improved Adaptive procedure + New Analysis
3. Practical HBE for Gaussian Kernel via Euclidean LSH
Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:
1. super-linear space!
2. Adaptive procedure has large constant overhead.
3. Gaussian Kernel Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:
1. Sketching (sub-linear space)
2. Improved Adaptive procedure + New Analysis
3. Practical HBE for Gaussian Kernel via Euclidean LSH
Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:

1. super-linear space!
2. Adaptive procedure has large constant overhead.
3. Gaussian Kernel Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:

1. Sketching (sub-linear space)
2. Improved Adaptive procedure + New Analysis
3. Practical HBE for Gaussian Kernel via Euclidean LSH
Overcoming practical Limitations of HBE

[Charikar, S. FOCS’17]

Practical Limitations:
1. super-linear space!
2. Adaptive procedure has large constant overhead.
3. Gaussian Kernel Ball-Carving LSH is slow.

[This work ICML’19]

Resolve by:
1. Sketching (sub-linear space)
2. Improved Adaptive procedure + New Analysis
3. Practical HBE for Gaussian Kernel via Euclidean LSH

[S.*, Rong*, Bailis, Charikar, Levis ICML’19]

First Practical and **Provably** Accurate Algorithm for Gaussian Kernel in High Dimensions
Going back a step

Q1: Practical HBE + preserve theoretical *guarantees*?
Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH
Going back a step

Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH

Q2: Is it always better to use?
Worst-case bounds can be misleading

Worst-case bounds do not always reflect reality

Random Sampling

good: $O(1)$ samples

bad: $O(1/\mu)$ samples
Going back a step

Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH

Q2: Is it always better to use?
Going back a step

Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH

Q2: Is it always better to use?

No: worst-case insufficient to predict performance on a dataset.
Going back a step

Q1: Practical HBE + preserve theoretical guarantees?

Yes: Sketching, Adaptive procedure, Euclidean LSH

Q2: Is it always better to use?

No: worst-case insufficient to predict performance on a dataset.

[This work ICML’19]
Diagnostic tools to estimate dataset-specific performance even without evaluating HBE
Outline of the rest of the talk

1. Sketching
2. Diagnostic tools
3. Experimental evaluation
Sketching
How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”
How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

1. Random points:
 ⇒ some buckets might have 0 points in sketch.

2. Point from each bucket:
 ⇒ might need a large number of points
How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

1 Random points:
 ⇒ some buckets might have 0 points in sketch.

2 point from each bucket:
 ⇒ might need a large number of points
How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

1. **Random points:**
 - ⇒ some buckets might have 0 points in sketch.

2. **Point from each bucket:**
 - ⇒ might need a large number of points
How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

1. Random points:
 ⇒ some buckets might have 0 points in sketch.

2. Point from each bucket:
 ⇒ might need a large number of points

Idea: interpolate between uniform points vs uniform over buckets!
How to sketch the KDF?

Recall: HBE samples a single point from each hash table.

Goal: “simulate” HBE on full sample by applying on “Sketch”

Two approaches:

1. Random points:
 ⇒ some buckets might have 0 points in sketch.

2. Point from each bucket:
 ⇒ might need a large number of points

Idea: interpolate between uniform points vs uniform over buckets!

Solution: hashing + non-uniform sampling
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P

$S \leftarrow \emptyset$.

for $j = 1, \ldots, \text{SketchSize}$:

- Sample bucket i prob. $\propto n_i^\gamma$
- Sample a random point J from bucket i: $S \leftarrow S \cup \{J\}$
- Weight it so that $\mathbb{E}_J[\hat{w}_{jk}(q, x_J)] \propto \text{KDF}_P(q)$

return (\hat{w}, S)
Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P

$S \leftarrow \emptyset$.

for $j = 1, \ldots$, SketchSize:

- Sample bucket i prob. $\propto n_i^\gamma$
- Sample a random point J from bucket i: $S \leftarrow S \cup \{J\}$
- Weight it so that $\mathbb{E}_J[\hat{w}_{jk}(q, x_J)] \propto KDF_P(q)$

return (\hat{w}, S)
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P

$$S \leftarrow \emptyset.$$

for $j = 1, \ldots, \text{SketchSize}$:

- Sample bucket i prob. $\propto n_i \gamma$
- Sample a random point J from bucket i: $S \leftarrow S \cup \{J\}$
- Weight it so that
 $$\mathbb{E}_J[\hat{w}_Jk(q, x_J)] \propto KDF_P(q)$$

return (\hat{w}, S)
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P

Theorem: $O(1/\tau)$ points suffice.

- Approx. any density $\mu \geq \tau$.
- Reduce space from $O(n/\sqrt{\tau})$ to $O(1/\sqrt{\tau^3})$.
- Contains a point from any bucket with $\geq n \cdot \tau$ points.
Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P

Theorem: $O(1/\tau)$ points suffice.

- Approx. any density $\mu \geq \tau$.
- Reduce space from $O(n/\sqrt{\tau})$ to $O(1/\sqrt{\tau^3})$.
- Contains a point from any bucket with $\geq n \cdot \tau$ points.
Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample \(h_0 \) evaluate on \(P \)

Theorem: \(O(1/\tau) \) points suffice.

- Approx. any density \(\mu \geq \tau \).
- Reduce space from \(O(n/\sqrt{\tau}) \) to \(O(1/\sqrt{\tau^3}) \)
- Contains a point from any bucket with \(\geq n \cdot \tau \) points
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample \(h_0 \) evaluate on \(P \)

Theorem: \(O(1/\tau) \) points suffice.

- Approx. any density \(\mu \geq \tau \).
- Reduce space from \(O(n/\sqrt{\tau}) \) to \(O(1/\sqrt{\tau^3}) \).
- Contains a point from any bucket with \(\geq n \cdot \tau \) points.
Sketching Kernel Density Function

Hashing-Based-Sketch (HBS): hashing + non-uniform sampling.

Sample h_0 evaluate on P

Theorem: $O(1/\tau)$ points suffice.
- Approx. any density $\mu \geq \tau$.
- Reduce space from $O(n/\sqrt{\tau})$ to $O(1/\sqrt{\tau^3})$
- Contains a point from any bucket with $\geq n \cdot \tau$ points

Sub-linear space: e.g. $\tau = \frac{1}{\sqrt{n}}$ we get $n^{5/4} \rightarrow n^{3/4}$
Diagnostic tools
Variance of Unbiased Estimators

Unbiased estimators: Random Sampling, HBE

Metric of interest is average relative variance:

\[\mathbb{E}_{q \sim P} \left[\frac{\text{Var}[Z(q)]}{\mathbb{E}[Z(q)]^2} \right] \propto \text{“Sample Complexity”} \]

Diagnostic Procedure

1. Sample a number \(T \) of random queries from \(P \).
2. For each: upper bound Relative Variance
3. Average for each method of interest over \(T \) queries.

Estimate mean and bound Variance
Bounding the variance

Variance is a “quadratic polynomial” of $w_i = k(q, x_i)$

$$\forall [Z] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}$$
Bounding the variance

Variance is a “quadratic polynomial” of $w_i = k(q, x_i)$

$$\nabla[Z] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}$$

Random Sampling (RS)

$$\mathbb{E}[k^2(q, X)] = \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2$$

$V_{ij} = 1$
Bounding the variance

Variance is a “quadratic polynomial” of \(w_i = k(q, x_i) \)

\[
\nabla [Z] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}
\]

Random Sampling (RS)

\[
\mathbb{E}[k^2(q, X)] = \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2
\]

\[V_{ij} = 1 \]

HBE collision prob. \(p(x, y) \)

\[
\mathbb{E}[Z^2] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}
\]

\[
V_{ij} = \frac{\min\{p(q, x_i), p(q, x_j)\}}{p^2(q, x_i)}
\]
Bounding the variance

Variance is a “quadratic polynomial” of $w_i = k(q, x_i)$

$$\mathbb{V}[Z] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}$$

Random Sampling (RS)

$$\mathbb{E}[k^2(q, X)] = \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2$$

$$V_{ij} = 1$$

HBE collision prob. $p(x, y)$

$$\mathbb{E}[Z^2] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}$$

$$V_{ij} = \frac{\min\{p(q,x_i), p(q,x_j)\}}{p^2(q,x_i)}$$

Evaluating variance naively requires $O(n)$ or $O(n^2)$ per query
Bounding the variance

Variance is a “quadratic polynomial” of \(w_i = k(q, x_i) \)

\[
\mathbb{V}[Z] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}
\]

Random Sampling (RS)

\[
\mathbb{E}[k^2(q, X)] = \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2
\]

\(V_{ij} = 1 \)

HBE collision prob. \(p(x, y) \)

\[
\mathbb{E}[Z^2] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}
\]

\[
V_{ij} = \frac{\min\{p(q, x_i), p(q, x_j)\}}{p^2(q, x_i)}
\]

Q: Efficient alternative?
Data-dependent Variance Bounds

Variance is a “quadratic polynomial” of $w_i = k(q, x_i)$

$$\mathbb{V}[Z] \leq \frac{1}{n^2} \sum_{i,j=1}^{n} w_i^2 V_{ij}$$

Decompose in 4 sets

For two sets $S_{\ell}, S_{\ell'}$:

$$\sum_{i \in S_{\ell}, j \in S_{\ell'}} w_i^2 V_{ij} \leq \sup_{i \in S_{\ell}, j \in S_{\ell'}} \left\{ \frac{w_i}{w_j} V_{ij} \right\} \mu_{\ell} \mu_{\ell'}$$

(Diagnostic 1)

Evaluate on subsample S_0

Produced by RS and Adapt. Algorithm

Diagnostic

1. $\text{bnd} \left(\frac{4}{2} \right)$ terms
2. Evaluate on subsample S_0
3. Produced by RS and Adapt. Algorithm
Evaluation
Algorithms for Kernel Evaluation

- Random Sampling (RS):
 sensitive to range of kernel values (distances).

- Hashing-Based-Estimators (HBE):
 sensitive to “correlations” (dense distant clusters)
 [Charikar, S. FOCS’2017][This work ICML’2019]

- Fast Improved Gauss Transform (FIGTree):
 sensitive to #“clusters” (directions) at certain distance
 [Morariu,Srinivasan,Raykar, Duraiswami, Davis, NeurIPS’2009]

- Approximate Skeletonization via Treecodes (ASKIT)
 sensitive to “medium” distance scale/size clusters
 [March, Xiao, Biros, SIAM JSC 2015]

Compare performance on Real-world datasets
Comparison on Real-world Datasets

HBE is consistently best or second-best method

![Graph showing comparison of HBE, RS, ASKIT, and FigTree on different datasets]
Comparison on Real-world Datasets

HBE is consistently best or second-best method

Diagnostic correctly (21/22) chooses between RS and HBE
Comparison on Real-world Datasets

HBE is consistently best or second-best method
Comparison on Real-world Datasets

HBE is consistently best or second-best method

![Average Query Time (ms)]

- **HBE**
- **RS**
- **ASKIT**
- **FigTree**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>HBE</th>
<th>RS</th>
<th>ASKIT</th>
<th>FigTree</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMY3</td>
<td>0.8</td>
<td>3</td>
<td>1.9</td>
<td>23</td>
</tr>
<tr>
<td>封面type</td>
<td>23</td>
<td>27.5</td>
<td>28</td>
<td>24.3</td>
</tr>
<tr>
<td>census</td>
<td>24.3</td>
<td>32.8</td>
<td>6.3</td>
<td>5.4</td>
</tr>
<tr>
<td>TIMIT</td>
<td>67.9</td>
<td>32.8</td>
<td>67.9</td>
<td>43.0</td>
</tr>
<tr>
<td>ALOI</td>
<td>5.2</td>
<td>5.2</td>
<td>2.1</td>
<td>5.0</td>
</tr>
<tr>
<td>SVHN</td>
<td>19.0</td>
<td>19.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>MSF</td>
<td>19.0</td>
<td>19.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>GloVe</td>
<td>19.0</td>
<td>19.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

![covertype](covertype.png)

![TIMIT](TIMIT.png)
Comparison on Real-world Datasets

HBE is consistently best or second-best method
Comparison on Real-world Datasets

HBE is consistently best or second-best method
Benchmark Instances

Synthetic Benchmarks:

1. **Worst-case:** no *single geometric aspect* can be exploited!
2. **D-clusters:** gauge impact of different geometric aspects.
Worst-case Instances

Union of highly-clustered with uncorrelated points

\[(\text{fixed } \mu = 10^{-3}, \text{ dimension } d \in [10, 500], \text{ 100K queries})\]

“Worst-case” data sets

- HBE best
- ASKIT second best
Instances with D clusters

Fix $N = n \cdot D = 500K$, vary $D \in [1, 10^5]$

D-structured datasets:
- $D \ll \sqrt{N}$: space partitions
- $D \sim N^{1-\delta}$: Random Samp.
- $1 \ll D \ll N$: HBE
Rehashing Kernel Evaluation in High Dimensions

Hashing-Based-Estimators:

1. Made practical + often state-of-the-art + worst-case guarant.
2. Data-dependent diagnostics: when to use & how to tune

“Rehashing” methodology

Open Source Implementation and Experiments
(https://github.com/kexinrong/rehashing)

Sketch → Diagnostics → Visualization → Config file (deployment)

Thank you!
psimin@stanford.edu