Stein Point Markov Chain Monte Carlo

Wilson Chen
Institute of Statistical Mathematics, Japan

June 11, 2019 @ ICML, Long Beach
Collaborators

Alessandro Barp
Francois-Xavier Briol
Jackson Gorham
Mark Girolami
Lester Mackey
Chris Oates
Empirical Approximation Problem

A major problem in machine learning and modern statistics is to approximate some difficult-to-compute density p defined on some domain $\mathcal{X} \subseteq \mathbb{R}^d$ where normalisation constant is unknown. I.e., $p(x) = \tilde{p}(x)/Z$ and $Z > 0$ is unknown.

We consider an empirical approximation of p with points $\{x_i\}_{i=1}^n$:

$$\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i),$$

so that for test function $f : \mathcal{X} \rightarrow \mathbb{R}$:

$$\int_{\mathcal{X}} f(x)p(x)dx \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i).$$

A popular approach is Markov chain Monte Carlo.
Discrepancy

Idea – construct a measure of discrepancy

\[D(\hat{p}_n, p) \]

with desirable features:

- Detect (non)convergence. I.e., \(D(\hat{p}_n, p) \to 0 \) only if \(\hat{p}_n \to^* p \).
- **Efficiently computable** with limited access to \(p \).

Unfortunately **not** the case for many popular discrepancy measures:

- Kullback-Leibler divergence,
- Wasserstein distance,
- Maximum mean discrepancy (MMD).
Kernel Embedding and MMD

Kernel embedding of a distribution p

$$\mu_p(\cdot) = \int k(x, \cdot)p(x)dx$$ (a function in the RKHS \mathcal{K})

Consider the maximum mean discrepancy (MMD) as an option for D:

$$D(\hat{p}_n, p) := \|\mu_{\hat{p}_n} - \mu_p\|_\mathcal{K} =: D_{k,p}(\{x_i\}_{i=1}^n)$$

$$\therefore D_{k,p}(\{x_i\}_{i=1}^n)^2 = \|\mu_{\hat{p}_n} - \mu_p\|^2_\mathcal{K} = \langle \mu_{\hat{p}_n} - \mu_p, \mu_{\hat{p}_n} - \mu_p \rangle$$

$$= \langle \mu_{\hat{p}_n}, \mu_{\hat{p}_n} \rangle - 2\langle \mu_{\hat{p}_n}, \mu_p \rangle + \langle \mu_p, \mu_p \rangle$$

We are faced with intractable integrals w.r.t. p!

For a Stein kernel k_0:

$$\mu_p(\cdot) = \int k_0(x, \cdot)p(x)dx = 0.$$

$$\therefore \|\mu_{\hat{p}_n} - \mu_p\|^2_{\mathcal{K}_0} = \|\mu_{\hat{p}_n}\|^2_{\mathcal{K}_0} =: D_{k_0,p}(\{x_i\}_{i=1}^n)^2 =: \text{KSD}^2!$$
Kernel Stein Discrepancy (KSD)

The kernel Stein discrepancy (KSD) is given by

$$D_{k_0,p}(\{x_i\}_{i=1}^n) = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} k_0(x_i, x_j)},$$

where k_0 is the Stein kernel

$$k_0(x, x') := \mathcal{T}_p \mathcal{T}_p' k(x, x')$$

$$= \nabla_x \cdot \nabla_{x'} k(x, x') + \langle \nabla_x \log p(x), \nabla_{x'} k(x, x') \rangle$$

$$+ \langle \nabla_{x'} \log p(x'), \nabla_x k(x, x') \rangle$$

$$+ \langle \nabla_x \log p(x), \nabla_{x'} \log p(x') \rangle k(x, x'),$$

with $\mathcal{T}_p f = \nabla (pf) / p$. ($\mathcal{T}_p$ is a Stein operator.)

- This is computable without the normalisation constant.
- Requires gradient information $\nabla \log p(x_i)$.
- Detects (non)convergence for an appropriately chosen k.
Stein Points (SP)

The main idea of Stein Points is the greedy minimisation of KSD:

\[x_j | x_1, \ldots, x_{j-1} \leftarrow \arg \min_{x \in \mathcal{X}} D_{k_0,p}(\{x_i\}_{i=1}^{j-1} \cup \{x\}) = \arg \min_{x \in \mathcal{X}} k_0(x, x) + 2 \sum_{i=1}^{j-1} k_0(x, x_i). \]

A global optimisation step is needed for each iteration.
Stein Point Markov Chain Monte Carlo (SP-MCMC)

We propose to replace the global minimisation at each iteration j of the SP method with a local search based on a p-invariant Markov chain of length m_j. The proposed SP-MCMC method proceeds as follows:

1. Fix an initial point $x_1 \in \mathcal{X}$.
2. For $j = 2, \ldots, n$:
 a. Select $i^* \in \{1, \ldots, j - 1\}$ according to criterion $\text{crit}(\{x_i\}_{i=1}^{j-1})$.
 b. Generate $(y_{j,i})_{i=1}^{m_j}$ from a p-invariant Markov chain with $y_{j,1} = x_{i^*}$.
 c. Set $x_j \leftarrow \arg \min_{x \in \{y_{j,i}\}_{i=1}^{m_j}} D_{k_0,p}(\{x_i\}_{i=1}^{j-1} \cup \{x\})$.

For crit, three different approaches are considered:

- **LAST** selects the point last added: $i^* := j - 1$.
- **RAND** selects i^* uniformly at random in $\{1, \ldots, j - 1\}$.
- **INFL** selects i^* to be the index of the most influential point in $\{x_i\}_{i=1}^{j-1}$.

We call x_i^{*} the most influential point if removing it from the point set creates the greatest increase in KSD.
Gaussian Mixture Model Experiment
SP-MCMC methods are compared against the original SP (Chen et al., 2018), MED (Roshan Joseph et al., 2015) and SVGD (Liu & Wang, 2016), as well as the Metropolis-adjusted Langevin algorithm (MALA) and random-walk Metropolis (RWM).
SP-MCMC methods are compared against the original SP (Chen et al., 2018), MED (Roshan Joseph et al., 2015) and SVGD (Liu & Wang, 2016), as well as the Metropolis-adjusted Langevin algorithm (MALA) and random-walk Metropolis (RWM).
Theoretical Guarantees

The convergence of the proposed SP-MCMC method is established, with an explicit bound provided on the KSD in terms of the V-uniform ergodicity of the Markov transition kernel.

Example: SP-MALA Convergence

Let $(m_j)_{j=1}^n \subset \mathbb{N}$ be a fixed sequence and let $\{x_i\}_{i=1}^n$ denote the SP-MALA output, based on Markov chains $(Y_{j,l})_{l=1}^{m_j}, j \in \mathbb{N}$. (Under certain regularity conditions) MALA is V-uniformly ergodic for $V(x) = 1 + \|x\|_2$ and $\exists C > 0$ such that

$$\mathbb{E} \left[D_{k_0,p}(\{x_i\}_{i=1}^n)^2 \right] \leq \frac{C}{n} \sum_{i=1}^n \frac{\log(n \wedge m_i)}{n \wedge m_i}.$$
Paper, Code and Poster

• Paper is available at:

• Code is available at:
 https://github.com/wilson-ye-chen/sp-mcmc

• Check out the poster at Pacific Ballroom #216 from 6:30pm to 8pm!