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Time	  Series	  



time t 

yt
Goals:	  
•  Evolu.on	  –	  	  Dynamics	  across	  .me	  
•  Rela.onal	  structure	  –	  Dependencies	  between	  series	  

Modeling	  challenges:	  
•  Large	  p	  –	  Many	  dimensions/series	  
•  Irregular	  grid	  of	  observa.ons	  
•  Missing	  values	  
•  Heterogeneous	  data	  sources	  
•  ...	  	  

yt …	  

Computa:onal	  challenges:	  
•  Large	  n	  –	  Long	  .me	  series	  
•  Streaming	  data	  –	  	  

Con.nuum	  of	  observa.ons	  



Preliminaries/Review	  

•  Mul.variate	  Gaussians	  
•  Hidden	  Markov	  models	  (HMMs)	  
•  Vector	  autoregressive	  (VAR)	  processes	  

– Stability/sta.onarity	  
•  Gaussian	  state	  space	  models	  

–  Iden.fiability	  



Quick	  Review	  of	  Gaussians	  

•  Univariate	  and	  mul.variate	  Gaussians	  

Covariance	  
defines	  shape	  

(eigvecs+eigvals)	  



Two-‐Dimensional	  Gaussians	  
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Condi.onal	  &	  Marginal	  Distribu.ons	  
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Marginally:	  
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Hidden	  Markov	  Models	  

Example	  applica:ons:	  
•  Parsing	  EEG	  recordings	  
•  Discovering	  behaviors	  in	  videos	  
•  Speech	  segmenta.on	  
•  Vola.lity	  regimes	  in	  financial	  

.me	  series	  
•  Genomics	  
•  …	  	  
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Example:	  Mo.on	  Capture	  Segmenta.on	  

Jump-‐
ing	  
jacks	  

Side	  
twists	  

Run	   Squats	  



Hidden Markov Model 
Transition  
matrix 

jumping 
jacks squats side 

twists 

State sequence 

TIME 

S
TA

TE
 

jumping jacks squats side twists 

Tutorial: 
Rabiner, Proc. IEEE 1989  

Jumping 
jacks 

Side 
twists Squats 

•  Markov	  transi.on	  dynamics:	  

Pr(xt = |xt�1 = ) = A

A
x1 x2 x3 x4 xT

A =



Hidden Markov Model 
Transition  
matrix 

jumping 
jacks squats side 

twists 

State sequence 

Tutorial: 
Rabiner, Proc. IEEE 1989  

Jumping 
jacks 

Side 
twists Squats 

A
x1 x2 x3 x4 xT

A =

Observations 
(e.g., body position)  

•  Condi.onally	  independent	  emissions:	  

•  Latent	  Markov	  chain	  structure	  enables	  
–  Efficient	  computa.on	  of	  marginals	  

	  using	  the	  forward-‐backward	  algorithm	  
–  Most-‐probable	  sequence	  via	  Viterbi	  
–  Parameter	  learning	  using	  Baum-‐Welch	  	  

(EM	  for	  HMMs)	  

yt | xt = ⇠ F (� )

�k

p(xt | y1, . . . , yT )

•  Markov	  transi.on	  dynamics:	  

Pr(xt = |xt�1 = ) = A



Motivating Other Time Series Models 

. . .
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Jumping	  Jacks	   Side	  Twists	   Arm	  Circles	  

Vector	  autoregressive	  (VAR)	  process:	  

yt =
rX

i=1

Aiyt�i + et et ⇠ N(0,⌃)



Stationary VAR Processes 

•  If	  the	  companion	  matrix	  has	  eigenvalues	  λ	  with	  |λ|<1,	  
then	  the	  process	  is	  stable	  

	  
•  If	  ini.alized	  infinitely	  in	  the	  past,	  then	  sta.onary	  

•  For	  VAR(1)	  process,	  marginal	  covariance	  sa.sfies	  

2

6664

A1 A2 · · · Ar

I 0 · · · 0

0
. . . 0 0

0 · · · I 0

3

7775

yt =
rX

i=1

Aiyt�i + et et ⇠ N(0,⌃)

E[yt] = µ = 0 cov(yt, yt+h) = �(h)

�(0) = A1�(0)A
0
1 + ⌃



State Space Models 

•  Like	  HMMs,	  but	  con.nuous-‐valued	  latent	  state	  sequence	  

•  En.re	  class	  of	  equivalent	  systems	  from	  input/output	  
perspec.ve	  by	  changing	  latent	  space	  via	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  

xt = Axt�1 + et et ⇠ N(0,⌃)

yt = Cxt + wt wt ⇠ N(0, R)

xt ! Txt

xt = Ãxt�1 + et et ⇠ N(0,⌃)

yt = C̃xt + wt wt ⇠ N(0, R)

Constrain	  	  
A,	  Σ,	  or	  C	  



State Space Models 

•  Can	  write	  a	  VAR(r)	  process	  in	  state	  space	  form	  via	  

xt =

2

6664

A1 A2 · · · Ar

I 0 · · · 0

0
. . . 0 0

0 · · · I 0

3

7775
xt�1 +

2

6664

I

0
...
0

3

7775
et

yt =
⇥
I 0 · · · 0

⇤
xt

State	  
space	  
models	  

VAR	  
processes	  

yt =
rX

i=1

Aiyt�i + et et ⇠ N(0,⌃)



time t 

yt
Goals:	  
•  Evolu.on	  –	  	  Dynamics	  across	  .me	  
•  Rela.onal	  structure	  –	  Dependencies	  between	  series	  

Modeling	  challenges:	  
•  Large	  p	  –	  Many	  dimensions/series	  
•  Irregular	  grid	  of	  observa.ons	  
•  Missing	  values	  
•  Heterogeneous	  data	  sources	  
•  ...	  	  

…	  

Computa:onal	  challenges:	  
•  Large	  n	  –	  Long	  .me	  series	  
•  Streaming	  data	  –	  	  

Con.nuum	  of	  observa.ons	  



Methods	  for	  Scaling	  to	  High	  Dimensions	  
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⌃�1

Gaussian	  
Graphical	  

Model	  

Zeros	  =	  no	  edge	  in	  graph,	  
Cond.	  ind.	  between	  nodes	  

sparse	  

⌃ = ⇤⇤0 + ⌃0

+=

Low	  
Rank	  

⌃�1sparse	  
Independent	  groups	  of	  nodes	  

Rk
Rp

k	  <<	  p	  

Low-‐dimensional	  embedding	  



Methods	  for	  Scaling	  to	  High	  Dimensions	  
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Model	  
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Cond.	  ind.	  between	  nodes	  

sparse	  
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+=

Low	  
Rank	  

⌃�1sparse	  
Independent	  groups	  of	  nodes	  

Rk
Rp

k	  <<	  p	  

Low-‐dimensional	  embedding	  



Modeling	  High-‐Dimensional	  Time	  Series	  



Magnetoencephalography	  (MEG)	  

... 

Helmet with  
102 sensors 

COW •  How	  does	  the	  brain	  code	  
concepts?	  
•  e.g.	  animals,	  food…	  



Magnetoencephalography	  (MEG)	  

... 

Helmet with  
102 sensors 

COW 



Magnetoencephalography	  (MEG)	  

... 

Helmet with  
102 sensors 

APPLE 



Magnetoencephalography	  (MEG)	  

... 

Helmet with  
102 sensors 

APPLE 

•  High dimensional 
 

•  Time-varying correlations 
à Functional connectivity 



Coping	  with	  Dimensionality	  

•  Observa.on:	  	  Sensors	  are	  redundant	  

•  Goal:	  
–  Harness	  low-‐dimensional	  embedding	  of	  dynamics	  

Dynamic Latent Factor Models 



High-‐Dim	  i.i.d.	  Data	  



⌃ = ⇤⇤0 + ⌃0

p� k

k << p
�0 = diag(�2

1 , . . . ,�2
p)

+=

• Assume	  normally	  distributed	  data	  

• Number	  of	  parameters:	  

	  
	  

	  

	  

	  

yi ⇠ Np(0,⌃)

Latent	  Factor	  Model	  

pk + p = p(k + 1) <<
p(p+ 1)

2

Modeling	  sta:s:cal	  uncertainty	  in	  	  
low-‐dim	  subspace	  

Rk

Rp ⇤ factor loadings 



Latent	  Factor	  Model	  

yi = �⇥i + �i

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌃ = ⇤⇤0 + ⌃0

Marginalize 
latent factors 

latent factors 

factor loadings 

Rp

Rk



Deriva.on	  of	  Marginal	  Distribu.on	  

yi = �⇥i + �i

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

Rp

Rk
•  Marginal	  mean:	  

•  Marginal	  covariance:	  

E[yi] = E[⇤⌘i + ✏i]

= ⇤E[⌘i] + E[✏i] = 0

cov(yi) = E[(yi � E[yi])(yi � E[yi])
0
]

= E[yiy
0
i]

= E[(⇤⌘i + ✏i)(⇤⌘i + ✏i)
0
]

= ⇤E[⌘i⌘
0
i]⇤

0
+ 2⇤E[⌘i✏i] + E[✏i✏

0
i]

= ⇤I⇤0
+ 0 + ⌃0

= ⇤⇤

0
+ ⌃0



Adding	  Dynamics	  



Dynamic	  Latent	  Factor	  Model	  

102 sensor trajectories 

Evolution of latent factors 

yt = ⇤⌘t + ✏t

 
Latent MEG  

responses to stimulus 

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌘t = �⌘t�1 + ⌫t



Dynamic	  Latent	  Factor	  Model	  
•  State-‐space	  model	  with	  	  
low-‐dim	  state	  and	  	  
high-‐dim	  observa.ons	  

•  Originally	  developed	  by	  
Geweke	  (1977)	  
–  Other	  early	  work:	  
Sargent	  and	  Sims	  (1977)	  
Watson	  and	  Engle	  (1983)	  

•  Very	  popular	  in	  econometrics	  
•  Most	  founda.onal	  dynamic	  
model	  of	  high-‐dimensional	  
.me	  series	  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌘t = �⌘t�1 + ⌫t



Dynamic	  Latent	  Factor	  Model	  

•  Assuming	  latent	  process	  is	  
stable,	  marginally	  

•  Though,	  s.ll	  a	  dynamic	  
process	  with	  lag	  covariance	  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

yt ⇠ N(0,⌃)

⌃ = ⇤⌃⌘⇤
0 + ⌃0

⌘t = �⌘t�1 + ⌫t

�y(h) = cov(yt, yt+h)

= ⇤�⌘(h)⇤
0 h > 0



Adding	  Complex	  Dynamics	  



Semiparametric	  Factor	  Model	  

•  Can	  consider	  a	  nonparametric	  
latent	  factor	  process	  
–  Gaussian	  processes	  
–  More	  on	  next	  slides…	  

•  For	  a	  regression	  seing,	  looks	  
very	  similar	  to	  
Teh,	  Seeger,	  &	  Jordan	  2004	  
–  x	  an	  arbitrary	  covariate,	  	  
not	  necessarily	  .me	  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

�t = ⇤(xt) + ⇥t

Nonparametric evolution  
of latent factors 

Time	  index	  



Gaussian	  Processes	  

•  Distribu.on	  on	  func.ons	  
–  f	  ~	  GP(m,κ)	  

•  m:	  mean	  func.on	  
•  κ:	  covariance	  func.on	  

–  p(f(x1),	  .	  .	  .	  ,	  f(xn))	  ∼	  Nn(μ,	  K)	  
•  μ	  =	  [m(x1),...,m(xn)]	  
•  Kij	  =	  κ	  (xi,xj)	  

•  Idea:	  If	  xi,	  xj	  are	  similar	  according	  to	  the	  kernel,	  then	  
f(xi)	  is	  similar	  to	  f(xj)	  

,

REVIEW 



Gaussian	  Processes	  

κ:	  covariance	  func.on	  

 

High	  lengthscale	  

Low	  lengthscale	  

f	  ~	  GP(m,κ)	  
(x, x
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Gaussian	  Processes	  

m:	  mean	  func.on	  

 
f	  ~	  GP(m,κ)	  

REVIEW 



Gaussian	  Processes	  

m:	  mean	  func.on	  

 
f	  ~	  GP(m,κ)	  

REVIEW 



•  Evalua.ng	  the	  GP-‐distributed	  func.on	  at	  any	  set	  	  
of	  loca.ons	  (x1,…,xn),	  we	  have	  

Induced	  Mul.variate	  Gaussian	  

x3x1x2 xn. . .
x

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

2

6664

f(x1)
f(x2)

...
f(xn)

3

7775
⇠ N(µ,K)

K =

REVIEW 



•  Comparing	  length-‐scales:	  

Induced	  Mul.variate	  Gaussian	  
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x

x3x1x2 xn. . .
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2D	  Gaussian	  Processes	  

41 
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Family	  of	  Gaussian	  Processes	  

Polynomial	  kernel	  =	  
finite	  polynomial	  basis	  

Matern	  (v=0.5)	  =	  
Brownian	  mo.on	  

Matern	  (v=0.5+p)	  =	  
cont	  .me	  AR(p)	  

Squared	  
exponen.al	  
kernel	  

RBF	  

REVIEW 



GPs	  for	  Regression	  

•  Start	  with	  noise-‐free	  scenario:	  directly	  observe	  the	  func.on	  

•  Training	  data	  
•  Test	  data	  loca.ons	  	  	  	  	  	  	  	  	  	  à	  	  predict	  f*	  	  

•  Jointly,	  we	  have	  

•  Therefore,	  	  

D = {(xi, fi), i = 1, . . . , n}
X⇤

✓
f
f⇤

◆
⇠ N

✓✓
µ
µ⇤

◆
,

✓
K K⇤
KT

⇤ K⇤⇤

◆◆

p(f⇤ | X⇤, X, f) =N(f⇤ | µ⇤ +K 0
⇤K
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1D	  Noise-‐Free	  Example	  

•  Interpolator,	  where	  uncertainty	  increases	  with	  distance	  
•  Useful	  as	  a	  computa.onally	  cheap	  proxy	  for	  a	  complex	  simulator	  

–  Examine	  effect	  of	  simulator	  params	  on	  GP	  predic.ons	  instead	  of	  doing	  expensive	  
runs	  of	  the	  simulator	  

REVIEW 



GPs	  for	  Regression	  

•  Noisy	  scenario:	  observe	  a	  noisy	  version	  of	  underlying	  func.on	  

–  Not	  required	  to	  interpolate,	  just	  come	  “close”	  to	  observed	  data	  

	  

•  Training	  data	  
•  Test	  data	  loca.ons	  	  	  	  	  	  	  	  	  	  à	  	  predict	  f*	  	  

•  Jointly,	  we	  have	  
	  
•  Therefore,	  	  

X⇤
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Dynamic	  Latent	  Factor	  Model	  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌘t = �⌘t�1 + ⌫tf(⌘1:t�1)



Capturing	  Changing	  Correla.ons	  



Observa.on:	  	  	  
1.  Sensors	  are	  redundant	  
2.  Correla.on	  pazern	  changes	  with	  .me	  	  

⌃ = ⇤⇤0 + ⌃0

p� k

+=

⇥(x) = �(x)�(x)� + ⇥0

Time	  index	  

Capturing	  Changing	  Correla.ons	  



Low-‐Rank	  Covariance	  Evolu.on	  

�11(·) �12(·)
�22(·)�21(·)

�p1(·)�p2(·)

⇥(x) = �(x)�(x)� + ⇥0

	   	  	  	  array	  of	  	  	  
processes	  over	  .me	  
p� k

p� k

k << p

Fox and Dunson, arXiv 2011. 
Related model without low-rank structure: Wilson and Ghahramani, UAI 2011. 



Low-‐Rank	  Covariance	  Evolu.on	  

�11(·) �12(·)
�22(·)�21(·)

�p1(·)�p2(·)

⇥(x) = �(x)�(x)� + ⇥0

+

Fox and Dunson, arXiv 2011. 
Related model without low-rank structure: Wilson and Ghahramani, UAI 2011. 



�11(·) �12(·)
�22(·)�21(·)

�p1(·)�p2(·)

One	  Step	  Further…	  

⇥(x) = ��(x)�(x)��� + ⇥0

�(·)

Fox and Dunson, arXiv 2011. 

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

�11 �12 �13

�21 �22 �23

...
...

...

...
...

...

�p1 �p2 �p3

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

�(·)

�11(·) �12(·)

�21(·) �22(·)

�32(·)�31(·)



⌘i ⇠ Nk(0, I)

Interpreta.on	  as	  Dynamic	  LFM	  

�t = ⇤(xt) + ⇥t

yt = �⇤(xt)⇥t + �t

�
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Time-Varying  
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Changing	  Correla.ons	  –	  MEG	  	  
102 sensors: 

Correlations between 
sensors change with 

processing of word “kick” 



Prior	  Specifica.on	  

�t = ⇤(xt) + ⇥t

yt = �⇤(xt)⇥t + �t
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�t = ⇤(xt) + ⇥t⌘i ⇠ Nk(0, I)�t = ⇤(xt) + ⇥t

yt = �⇤(xt)⇥t + �t

✏i ⇠ Np(0,⌃0)
Model	  

parameters	  
Gaussian	  	  
Processes	  

	  	  



Data	  Collec.on	  
•  4	  word	  categories,	  5	  words	  per	  category	  

•  20	  repe..ons	  per	  word	  (400	  total)	  
–  15	  train/word	  (300	  total)	  
–  5	  test/word	  (100	  total)	  

Animals 

Tools 

Food 

Buildings 

Fyshe, Fox, Dunson, and Mitchell, AISTATS 2012. 



Classifica.on	  Performance	  



Perceptual	  vs.	  Seman.c	  Correla.ons	  
hammer (sensor 2432) house (sensor 2432)

hammer (sensor 0442) house (sensor 0442)

 

 

C
o

rr
e

la
ti
o

n

!0.2

!0.1

0

0.1

0.2

0.3

0.4

t = 101 ms 

Perceptual 
hammer (sensor 2432) house (sensor 2432)

hammer (sensor 0442) house (sensor 0442)

 

 

C
o
rr

e
la

ti
o
n

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

hammer (sensor 2432) house (sensor 2432)

hammer (sensor 0442) house (sensor 0442)

 

 

C
o
rr

e
la

ti
o
n

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

t = 401 ms 

Semantic 



Low-‐Dim	  Embedding	  Summary	  

•  Latent	  factor	  models	  
–  Low-‐rank	  covariance	  approxima.on	  to	  high-‐dim	  i.i.d.	  Gaussian	  observa.ons	  

•  Dynamic	  latent	  factor	  model	  
–  Interpreta.on	  as	  state	  space	  model	  with	  low-‐dim	  state	  
–  Many	  approaches	  to	  modeling	  latent	  dynamics,	  including	  Gaussian	  processes	  

•  Capturing	  changing	  correla.ons	  in	  high-‐dim	  seing	  
–  Factor	  structure	  within	  dynamic	  latent	  factor	  model	  
–  Gaussian	  process	  “dic.onary”	  func.ons	  

⌃ = ⇤⇤0 + ⌃0

+=

Low	  
Rank	   Rk

Rp
k	  <<	  p	  

Low-‐dimensional	  embedding	  



Methods	  for	  Scaling	  to	  High	  Dimensions	  
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Rk
Rp

k	  <<	  p	  

Low-‐dimensional	  embedding	  



Clustering	  Time	  Series	  



High-‐Resolu.on	  Housing	  Price	  Index	  
• Goal:	  Model	  neighborhood	  housing	  value	  over	  .me	  based	  on	  

	  observed	  house	  sales	  (with	  covariates)	  



Issue:	  Data	  are	  spa.otemporally	  sparse	  

Challenge	  

Average monthly sales < 1 < 3 < 5 < 7 < 9

Number of tracts 16 58 114 136 139

Percentage of tracts 0.11 0.41 0.81 0.97 0.99

62 
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Fig 2. A demonstration of the e↵ect of clustering: (a) and (b) show the posterior mean
( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L

2

distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have
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( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L

2

distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have



Relate	  Time	  Series	  via	  Clustering	  
20 Y. REN ET AL.
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

Solu:on:	  
	  

Discover	  groups	  
of	  tracts	  with	  
correlated	  
dynamics	  
	  
Leverage	  
observaJons	  
jointly	  within	  
group	  



State	  Space	  Model	  

Latent	  price	  dynamics	  

Observed	  log(price)	  

State	  

Observa.on	  

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

Discrete-‐.me	  linear	  Gaussian	  state	  space	  model	  	  for	  census	  tract	  i	  

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )

yt,i,l = xt,i +
HX

h=1

�i,hUl,r + vt,i,l vt,i,l ⇠ N (0, Ri) ,

covariate	  effects	  

Hidden:	  global	  trend	  +	  seasonality	  tract	  i	  

lth	  sales	  

Ren, Fox, Bruce, arXiv 2015. 



Mul.ple	  Census	  Tract	  Model	  

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )Latent	  price	  dynamics:	  

p-‐dim	  vector	  

tract	  i	  

✏t ⇠ N(0,⌃)

Structure???	  

Ren, Fox, Bruce, arXiv 2015. 



Cluster	  and	  Correlate	  Mul.ple	  Time	  Series	  
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

⌃



Cluster	  and	  Correlate	  Mul.ple	  Time	  Series	  
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•  Challenge:	  	  
Unknown	  cluster	  structure	  =	  unknown	  #	  of	  blocks	  &	  size	  of	  each	  	  

•  Solu.on:	  Latent	  factor	  model	  with	  Bayesian	  nonparametric	  prior	  
	   	   	  	  	  on	  latent	  factor	  processes	  

Correlated	  dynamics	  
in	  cluster	  k	  



Latent	  Factor	  Model	  for	  Innova.ons	  
Assume	  clusterings	  known	  and	  fixed.	  	  If	  tract	  	  	  	  is	  from	  cluster	  	  	  	  	  ,	  i k
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for i 6= j

(i, j) entry in ⌃k = �ik�jk

✏(k)t,i = �ik⌘⇤t,k + ✏̃t,i ✏̃t,i ⇠ N(0,�2
0) ⌘⇤t,k ⇠ N(0, 1).

latent factor process  
for cluster k 

factor  
loadings 

cov(✏t,i, ✏t,i0 |{�}, {z}) =
⇢

�ik�i0k + �2
0�(i, i

0
) zi = zi0 = k, 8k

0 otherwise.



Clustering	  Time	  Series	  

How	  many	  clusters???	  



Bayesian Nonparametric Clustering 

•  Bayesian	  nonparametric	  
approach:	  
–  Allows	  infinite	  #	  clusters	  
–  Uses	  sparse	  subset	  
– Model	  complexity	  
adapts	  to	  observa.ons	  

Mixture of Gaussians 

✓1 ✓2 ✓3 ✓4 ✓5 ✓6 ✓7 . . .
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customers observed data to be clustered 
tables distinct clusters 

Chinese	  Restaurant	  Process	  (CRP)	  

•  Distribu.on	  on	  induced	  par..ons	  described	  via	  the	  CRP	  
•  Visualize	  clustering	  as	  a	  sequen.al	  process	  of	  customers	  siing	  at	  

tables	  in	  an	  (infinitely	  large)	  restaurant:	  

•  The	  first	  customer	  sits	  at	  a	  table.	  	  Subsequent	  customers	  randomly	  
select	  a	  table	  according	  to:	  

Number of current 
assignments to 

parameter k 

REVIEW 



Cluster	  by	  Latent	  Factor	  Process	  

Recall:	  Desired	  structure	  azained	  by	  assuming	  that	  if	  tract	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  from	  cluster	  	  	  	  	  ,	  

i
k

✏(k)t,i = �ik⌘⇤t,k + ✏̃t,i ✏̃t,i ⇠ N(0,�2
0) ⌘⇤t,k ⇠ N(0, 1).

latent factor process  
for cluster k 

factor  
loadings 

Gaussian	  i.i.d.	  version:	  	  
[Palla	  et	  al.,	  NIPS	  2012]	  

Mo:vates:	  Dirichlet	  process	  mixture	  model	  with	  
	  

Latent	  price	  dynamics	  

Observed	  log(price)	  

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )

yt,i,l = xt,i +
HX

h=1

�i,hUl,r + vt,i,l vt,i,l ⇠ N (0, Ri) ,

covariate	  effects	  

tract	  i	  

lth	  sales	  

Ren, Fox, Bruce, arXiv 2015. 



Alterna.ve	  Clustering	  

Alterna:ve:	  Dirichlet	  process	  mixture	  model	  with	  
	  

Latent	  price	  dynamics	  

Observed	  log(price)	  

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )

yt,i,l = xt,i +
HX

h=1

�i,hUl,r + vt,i,l vt,i,l ⇠ N (0, Ri) ,

covariate	  effects	  

tract	  i	  

lth	  sales	  

Cluster-‐specific	  covariate	  model	  Cluster-‐specific	  latent	  trend	  

[Nieto-‐Barajas	  and	  Contreras-‐Cristán,	  2014]	  

Assumes	  all	  census	  tracts	  in	  cluster	  have	  same	  latent	  value	  rather	  
than	  just	  correlated	  latent	  value	  

	  (also	  cluster	  parameter	  xT+1	  depends	  on	  xT,	  whereas	  εT+1	  ind.	  of	  εT)	  
	  



Housing	  Data	  Analysis	  

•  Seazle	  City	  
– 140	  census	  tracts	  
– 125k	  transac.ons	  during	  17	  years 	  	  

•  Computa.onal	  details:	  
– Parallel	  (collapsed)	  Dirichlet	  process	  MCMC	  
sampler	  

– 10x	  speedup	  with	  10	  processors	  
[Williamson	  et	  al.,	  ICML	  2013]	  



Seazle	  City	  Analysis	  (17	  years)	  
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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Fig 12. Map of clusters under the MAP sample. The cluster labels and associated map
colors are selected to indicate the level of deviance of the cluster’s average (across tracts)
latent trend from the global trend. Blue (1) represents a small deviance while red (16)
represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until
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Fig 13. Under the MAP sample, cluster-average intrinsic price dynamics computed by
averaging x1:T,i over all i with zi = k for k = 1, . . . , 16. The color scheme is the same as
in Figure 12.

Table 3

For our predictive performance comparison summarized in Table 4, the number of tracts
and individual houses (in test set) that rely on using city, zip code, or tract-level indices

with the Case-Shiller method. Our Bayesian method always uses a tract-level index.

Case-Shiller Case-Shiller Case-Shiller Bayesian
City Zip Code Census Tract Census Tract

# tracts using 11 121 8 140
# observations using 1,294 26,576 3,248 31,118

there is a computable index that can serve as xt,i in our prediction. That is,
we use the finest resolution Case-Shiller index available at any house location
to predict house prices. In Table 3, we summarize the number of house-level
predictions that are based on the Case-Shiller city, zip code, or tract level
indices; we also include the number of tracts for which our analyses relied
on city and zip code levels, or were able to use tract-level indices directly.

Our Bayesian model can successfully produce value indices for all tracts.
To predict house-level prices, we use the posterior predictive distribution
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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Fig 12. Map of clusters under the MAP sample. The cluster labels and associated map
colors are selected to indicate the level of deviance of the cluster’s average (across tracts)
latent trend from the global trend. Blue (1) represents a small deviance while red (16)
represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until

Cluster-‐Mean	  (Log)	  Latent	  Price	  Dynamics	  

Cluster	  Map	  
(colored	  by	  devia.on	  
	  from	  global	  trend)	  
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in	  house	  sales	  predicJons	  



Clusters	  of	  Time	  Series	  Summary	  

•  Goal:	  Cluster	  .me	  series	  to	  share	  informa.on	  
–  Individually	  not	  informa.ve	  enough	  	  
–  Full	  joint	  model	  sta.s.cally	  and	  computa.onally	  infeasible	  

•  Cluster	  structure	  
–  Cluster	  on	  latent	  state	  process	  à	  clusters	  of	  idenJcal	  latent	  trends	  
–  Assume	  latent	  factor	  model	  for	  AR	  innova.ons	  +	  cluster	  latent	  factor	  process	  à	  

clusters	  of	  correlated	  Jme	  series	  

•  Bayesian	  nonparametric	  clustering	  
–  Dirichlet	  process	  prior	  allows	  unknown	  number	  of	  clusters	  

⌃�1sparse	  
Independent	  groups	  of	  nodes	  



Methods	  for	  Scaling	  to	  High	  Dimensions	  
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Graphs	  of	  Time	  Series	  

Collec.on	  of	  
interac.ng	  
.me	  series	  



Condi.onal	  Independencies	  

T =  1000 T =  2500 T =  5000 T =  10000

Figure 2: Example evolution of error types for the piecewise prior method as a function of series length, T 2
{1000, 2500, 5000, 10000} and N = 1, for a selected graph. Blue, red, black, and white entries indicate true positives,
false negatives, false positives, and true negatives, respectively. The graph was selected by choosing the graph out of 200
replications with median true positive rate at T = 2500.

log-returns according to rt = 100 log(pt/pt�1). We com-
pare the graphical models inferred under two settings: (i)
treating the log-returns as independent (as in [20]) and (ii)
using our methods to learn a TGM treating the log-returns
as a time series. The best graphical models learned in each
scenario are depicted in Fig. 3.

For our TGM algorithm, we computed the periodogram for
the 17-dimensional time series, resulting in 542 complex-
valued matrices of dimension 17⇥ 17. Since we only have
one realization of the time series, we smoothed the pe-
riodogram using the techniques and settings discussed in
Sec. 6.2. We then ran the FINCS algorithm for 100,000
iterations. We compare the resulting highest-probability
graph (see Fig. 3) to that learned treating the time series
as independent based on the model in [20], again using
100,000 iterations of the FINCS algorithm, but in its origi-
nally proposed form for non-temporal data.

In Figure 3, we see that in both cases we recover some geo-
graphical relationships between countries. However, the in-
dependent model returns a significantly denser graph than
that learned by our TGM approach. Since the independent
model is not taking the temporal nature of the data into
account, some edges are likely spurious due to random cor-
relations. The TGM, on the other hand, provides an inter-
pretable and intuitive structure with strong geographic con-
nections. For example, there is a distinct United Kingdom
/ eurozone cluster of Germany ‘DE’, Finland ‘FI’, Nether-
lands ‘NL’, Belgium ‘BE’, Switzerland ‘CH’, Austria ‘AT’,
Spain ‘ES’, Italy ‘IT’, Portugal ‘PT’, and the United King-
dom ‘UK’. Another distinct cluster includes the United
States ‘US’, Canada ‘CA’, Hong Kong ‘HK’ (whose cur-
rency is linked to the USD), and Australia ‘AU’ (whose
currency is correlated with the US S&P), with Japan ‘JP’
hanging off this cluster. One perhaps strange missing link
is between Ireland ‘IE’ and the UK, though the US and Ire-
land have a long history of economic connections perhaps
explaining why Ireland is included as a part of the separator
between these two distinct clusters.

Figure 3: Graphical models with the highest posterior prob-
ability for the stock index data. Left: Treating the log-
returns as independent. Right: Using our TGM algorithm.
In both cases, we see regional connections, but our TGM
algorithm results in a sparser and more interpretable graph.

8 Magnetoencephalography Data

Next we learn TGMs to capture the structure of underlying
cortical dynamics from magnetoencephalography (MEG)
data collected from ten subjects who were asked to per-
form a task while maintaining focus on an audio stream
and then again while switching focus [36]. Our goal is to
discover differences in the underlying TGMs between the
non-switching and switching attention conditions. Such
differences provide further understanding into the neural
underpinnings of auditory selective selection, an important
constituent to communication.

The data were collected for each subject performing the ex-
periment in the switching (S) and non-switching (N) atten-
tion conditions. For both S and N conditions, each subject
performed the task under an auditory condition of high (U)
and low (D) pitch, and spatial conditions of left (L) and
right (R) attending. For each of the eight possible condi-
tions, MEG recordings were collected resulting in a 150-
dimensional time series of length 992 where each dimen-
sion corresponds to a localized region of the brain. We
have between 17 and 30 trials for each subject, resulting in
about 200 replicate time series per condition.

Collec:on	  of	  global	  stock	  indices	  
Data:	  .me	  series	  of	  daily	  returns	  

Countries:	  
Australia	  (AU)	  
Austria	  (AT)	  
Belgium	  (BE)	  
Canada	  (CA)	  
Finland	  (FI)	  
France	  (FR)	  
Germany	  (DE)	  
Hong	  Kong	  (HK)	  
Ireland	  (IE)	  
Italy	  (IT)	  
Japan	  (JP)	  
Netherlands	  (NL)	  
Portugal	  (PT)	  
Spain	  (ES)	  
Switzerland	  (CH)	  
United	  Kingdom	  (UK)	  
United	  States	  (US)	  



Graphs	  of	  i.i.d.	  Data	  

Collec.on	  of	  
interac.ng	  
random	  
variables	  



Graphical	  Models	  for	  Random	  Variables	  
•  Graph	  G=(V,E)	  encodes	  condi.onal	  independence	  statements	  

edges nodes 
no	  edge	  (i,j) 	  	  	  	  	  Xi	  ,	  Xj	  cond.	  ind.	  given	  rest	  )



Gaussian	  Graphical	  Models	  
•  Assume	  Gaussian	  random	  vector	  
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X ⇠ N (0,⌃)

no	  edge	  (i,j) 	  	  	  	  	  Xi	  ,	  Xj	  cond.	  ind.	  given	  rest	  ) ()

⌃�1 =

Cond.	  ind.	  encoded	  in	  precision	  matrix	  



Informa.on	  Form	  Gaussian	  

•  Mo.va.ons	  for	  considering	  “informa.on	  form”	  of	  
mul.variate	  normal	  
–  Easier	  to	  read	  off	  condi.onal	  densi.es	  
–  Has	  log-‐linear	  form	  in	  terms	  of	  “informa.on	  parameters”	  	  

1p
2⇡|⌃|

e�
1
2 (x�µ)T⌃�1(x�µ)

/ e⌘
T
x� 1

2x
T⌦x



Info.	  Gaussian	  Condi.onal	  Densi.es	  

•  Assume	  a	  model	  with	  

	  	  	  	  	  and	  divide	  the	  dimensions	  into	  two	  sets	  
	  
•  Then,	  

x ⇠ N

�1(⌘,⌦)

A, Ā


xA

xĀ

�
⇠ N

�1

✓
⌘A

⌘Ā

�
,


⌦AA ⌦AĀ

⌦ĀA ⌦ĀĀ

�◆



Info.	  Gaussian	  Condi.onal	  Densi.es	  

•  Let 	   	   	   	  	  	  	  and	  	  	  	  	  	  everything	  else	  

•  What	  if	   	   	   	  	  ?	  	  	  

•  Precision	  matrix	  encodes	  condiJonal	  independencies	  

A = {s, t} A, Ā

p(xA | xĀ) = N

�1(⌘A � ⌦AĀxĀ,⌦AA)

cov(xs, xt | x\st) = ⌦

�1
AA =


⌦

�1
ss 0

0 ⌦

�1
tt

�

, xs ?? xt | x\st

⌦st = 0

inverse	  cov.	  of	  	  	  



Sparse	  Precision	  vs.	  Covariance	  
•  For	  a	  sparse	  precision	  matrix,	  the	  covariance	  need	  not	  be	  



Defining	  Graphs	  of	  Time	  Series	  

Collec.on	  of	  
interac.ng	  
.me	  series	  



Random	  Variables	  à	  Stochas.c	  Processes	  

Goal:	  Represent	  and	  infer	  
condi.onal	  independence	  rela.ons	  
between	  Jme	  series	  
	  
Assume	  staJonarity:	  
	  
	  
	  
For	  simplicity,	  zero	  mean	  
	  
	  

time 

. . . 

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

T



Graphical	  Models	  for	  Time	  Series	  
no	  edge	  (i,j) 	  	  	  	  	  Jme	  series	  Xi	  ,	  Xj	  cond.	  ind.	   	  

	   	  	  	  	  	  given	  enJre	  histories	  of	  other	  series	  
)

Accounts	  for	  interac.ons	  at	  any	  lag	  

()



Naïve	  Approach	  to	  Structure	  Learning	  

X̃ =

2

6664

X1

X2
...

Xp

3

7775
=

2

6666666666666664

X1(1)
X1(2)

...
X1(T )

...
Xp(1)
Xp(2)

...
Xp(T )

3

7777777777777775



Naïve	  Approach	  to	  Structure	  Learning	  

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

Lagged	  covariance	  matrix	  

Tp	  x	  Tp	  matrix	  

X̃ ⇠ N(0,⌃)

2

6664

�(0) �(1) �(2) · · · �(T � 1)
�(1)0 �(0) �(1) · · · �(T � 2)
...

. . .
...

�(T � 1)0 �(T � 2)0 · · · �(1)0 �(0)

3

7775
X̃ =

2

6664

X1

X2
...

Xp

3

7775
=

2

6666666666666664

X1(1)
X1(2)

...
X1(T )

...
Xp(1)
Xp(2)

...
Xp(T )

3

7777777777777775

cov	  	  	  	  	  	  	  	  	  	  	  	  	  =	  



Previous	  Approaches	  
•  Songsiri	  et	  al.	  2011	  

–  Assume	  parametric	  .me	  series	  model	  
–  Determine	  condi.ons	  on	  parameters	  leading	  to	  
condi.onal	  independencies	  

–  Op.mize	  penalized	  likelihood	  

VAR(q)	  process:	  

Objec:ve:	  Penalized	  likelihood	  with	  a	  group	  penalty	  to	  enforce	  group	  sparsity	  
Tool:	  Op.mize	  convex	  relaxa.on	  

X(t) =
qX

i=1

AiX(t� i) + ✏(t) ✏(t) ⇠ N(0,⌃✏)

Main	  Result:	  

Bk = ⌃
� 1

2
✏ Ak Y k =

p�kX

`=0

BT
` Bk+`

Xa ? Xb | XV \{a,b} () Y k
ab = Y k

ba = 0 8k

Define:	  



Previous	  Approaches	  
•  Songsiri	  et	  al.	  2011	  

–  Assume	  parametric	  .me	  series	  model	  
–  Determine	  condi.ons	  on	  parameters	  leading	  to	  
condi.onal	  independencies	  

–  Op.mize	  penalized	  likelihood	  

•  Dahlhaus	  2000,	  Matsuda	  2006,	  Wolstenholme	  and	  
Walden	  2015,	  Bach	  and	  Jordan	  2004,	  Jung	  et	  al.	  2014	  
–  Transform	  to	  frequency	  domain	  
–  Determine	  condi.ons	  on	  spectral	  parameters	  leading	  to	  
condi.onal	  independencies	  

–  Hypothesis	  test	  to	  see	  if	  condi.ons	  are	  sa.sfied	  
	   	   	   	   	   	  OR	  

–  Op.mize	  a	  Whizle-‐approximated	  (penalized)	  likelihood	  



Model	  in	  the	  Frequency	  Domain	  

FFT	  

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

Spectral	  density	  matrix	  

X(t) dk

Lagged	  covariance	  matrix	  

What	  condi.ons	  on	  S	  leads	  to	  condi.onal	  independence?	  	  

Dependence	  between	  .me	  series,	  	  
decomposed	  across	  frequencies	  

S(�) =
1X

h=�1
�(h)e�i�h



Encoding	  Time	  Series	  Structure	  
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single

17

�1 �2 �k �T. . . . . .
complex	  inverse	  spectral	  density	  matrices	  

(Dahlhaus,	  2000)	  	  For	  Gaussian	  sta.onary	  .me	  series,	  	  
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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For	  Gaussian	  i.i.d.	  random	  variables,	  	  

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

()Xi ? Xj | XV \i,j

S�1(�) :



Learning	  Graphs	  of	  Time	  Series	  

Collec.on	  of	  
interac.ng	  
.me	  series	  

Dalhaus	  gives	  condi.ons	  for	  
iden.fying	  condi.onal	  
independencies	  
	  

How	  to	  learn	  
structure	  from	  

data???	  
	  Likelihood	  approach:	  	  

	  	  	  	  	  	  need	  to	  relate	  data	  to	  spectral	  density	  matrix	  
	  



Whizle	  Approxima.on	  (no	  graph)	  

•  Fourier	  coeff.	  asympto@cally	  independent	  

•  Instead	  of	  likelihood	  depending	  on	  Tp	  x	  Tp	  covariance,	  
decomposes	  over	  p	  x	  p	  spectral	  density	  matrices:	  

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

indicates	  the	  	  
conjugate	  transpose	  

p(X1:p|S0:T�1) ⇡
T�1Y

k=0

1

⇡p|Sk|
e�d⇤

kS
�1
k dk

dk =
1

T

T�1X

t=0

X(t)e�i�kt

dk ⇠ Nc(0, Sk) k = 0, . . . , T � 1

Close	  to	  Gaussian	  likelihood	  with	  iid	  data…	  



Decomposable	  Graphs	  
•  If	  graph	  is	  decomposable,	  joint	  distribu.on	  decomposes	  over	  

cliques	  C	  and	  separators	  S	  
	  

Clique	  

Clique	  

Separator	  

p(x) =

Q
C2C p(xC)Q
S2S p(xS)



Whizle	  on	  Decomposable	  Graphs	  

Clique	  

Clique	  

Separator	  

p(X1:p|S0:T�1) ⇡
T�1Y

k=0

1

⇡p|Sk|
e�d⇤

kS
�1
k dk

p(X1:p|G,S0:(T�1)) ⇡
T�1Y

k=0

Q
C2C

1
⇡p|C||SkC |p e

�trPkCS�1
kC

Q
S2S

1
⇡p|S||SkS |p e

�trPkSS�1
kS

p(X1:p|G,S0:(T�1)) ⇡

Periodogram	  at	  frequency	  λk	  
dkd

⇤
k
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Bayesian	  Approach	  to	  Structure	  Learning	  

Tank, Foti, Fox, UAI 2015. 
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Tank, Foti, Fox, UAI 2015. 



Marginal	  Likelihood	  
•  Hyper	  complex	  inverse	  Wishart	  prior	  on	  Σ	  

•  Complex	  normal	  observa.on	  d	  

•  Marginal	  likelihood	  

p(⌃|�,W,G) = h(W, �, G)1⌃2M+(G)|⌃|�(�+2p)e�trW⌃�1

p(d|G,⌃) =
1

⇡p
|⌃|�1e�trP⌃�1

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

REVIEW 



Marginal	  Likelihood	  

d | ⌃ ⇠ Nc(0,⌃)

⌃ | G ⇠ HIWc(�,W,G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)
p(d | G)

•  Generically:	  

•  For	  .me	  series	  graph:	  

•  For	  decomposable	  graphs	  
–  Prior	  decomposes	  over	  cliques	  C	  and	  separators	  S	  
–  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  decomposes	  over	  cliques	  C	  and	  separators	  S	  
–  Marginal	  likelihood	  decomposes	  over	  cliques	  C	  and	  separators	  S	  

	  

Sk | G ⇠ HIWc(�k,Wk, G)

dk | Sk ⇠ Nc(0, Sk)

p(X1:p | G) ⇡
TY

k=1

1

⇡p

h(Wk, �k, G)

h(Wk + Pk, �k + 1, G)

h(W, �, G)

REVIEW 



Global	  Stock	  Indices	  

T =  1000 T =  2500 T =  5000 T =  10000

Figure 2: Example evolution of error types for the piecewise prior method as a function of series length, T 2
{1000, 2500, 5000, 10000} and N = 1, for a selected graph. Blue, red, black, and white entries indicate true positives,
false negatives, false positives, and true negatives, respectively. The graph was selected by choosing the graph out of 200
replications with median true positive rate at T = 2500.

log-returns according to rt = 100 log(pt/pt�1). We com-
pare the graphical models inferred under two settings: (i)
treating the log-returns as independent (as in [20]) and (ii)
using our methods to learn a TGM treating the log-returns
as a time series. The best graphical models learned in each
scenario are depicted in Fig. 3.

For our TGM algorithm, we computed the periodogram for
the 17-dimensional time series, resulting in 542 complex-
valued matrices of dimension 17⇥ 17. Since we only have
one realization of the time series, we smoothed the pe-
riodogram using the techniques and settings discussed in
Sec. 6.2. We then ran the FINCS algorithm for 100,000
iterations. We compare the resulting highest-probability
graph (see Fig. 3) to that learned treating the time series
as independent based on the model in [20], again using
100,000 iterations of the FINCS algorithm, but in its origi-
nally proposed form for non-temporal data.

In Figure 3, we see that in both cases we recover some geo-
graphical relationships between countries. However, the in-
dependent model returns a significantly denser graph than
that learned by our TGM approach. Since the independent
model is not taking the temporal nature of the data into
account, some edges are likely spurious due to random cor-
relations. The TGM, on the other hand, provides an inter-
pretable and intuitive structure with strong geographic con-
nections. For example, there is a distinct United Kingdom
/ eurozone cluster of Germany ‘DE’, Finland ‘FI’, Nether-
lands ‘NL’, Belgium ‘BE’, Switzerland ‘CH’, Austria ‘AT’,
Spain ‘ES’, Italy ‘IT’, Portugal ‘PT’, and the United King-
dom ‘UK’. Another distinct cluster includes the United
States ‘US’, Canada ‘CA’, Hong Kong ‘HK’ (whose cur-
rency is linked to the USD), and Australia ‘AU’ (whose
currency is correlated with the US S&P), with Japan ‘JP’
hanging off this cluster. One perhaps strange missing link
is between Ireland ‘IE’ and the UK, though the US and Ire-
land have a long history of economic connections perhaps
explaining why Ireland is included as a part of the separator
between these two distinct clusters.

Figure 3: Graphical models with the highest posterior prob-
ability for the stock index data. Left: Treating the log-
returns as independent. Right: Using our TGM algorithm.
In both cases, we see regional connections, but our TGM
algorithm results in a sparser and more interpretable graph.

8 Magnetoencephalography Data

Next we learn TGMs to capture the structure of underlying
cortical dynamics from magnetoencephalography (MEG)
data collected from ten subjects who were asked to per-
form a task while maintaining focus on an audio stream
and then again while switching focus [36]. Our goal is to
discover differences in the underlying TGMs between the
non-switching and switching attention conditions. Such
differences provide further understanding into the neural
underpinnings of auditory selective selection, an important
constituent to communication.

The data were collected for each subject performing the ex-
periment in the switching (S) and non-switching (N) atten-
tion conditions. For both S and N conditions, each subject
performed the task under an auditory condition of high (U)
and low (D) pitch, and spatial conditions of left (L) and
right (R) attending. For each of the eight possible condi-
tions, MEG recordings were collected resulting in a 150-
dimensional time series of length 992 where each dimen-
sion corresponds to a localized region of the brain. We
have between 17 and 30 trials for each subject, resulting in
about 200 replicate time series per condition.

i.i.d.	  graph	   .me	  series	  graph	  



MEG	  Auditory	  Azen.on	  Task	  
•  Two	  tasks:	  (1)	  Focus	  azen.on,	  (2)	  Switch	  azen.on	  
•  Four	  setups:	  high	  pitch,	  low	  pitch,	  le�	  sound,	  right	  sound	  
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High pitch (U) Low pitch (D) Left (L) Right (R)

Figure 4: Learned TGMs for different MEG conditions. Each node on the periphery represents a brain region with loca-
tion indicating anatomical location. Top: Intersection of learned edges between switching and non-switching conditions.
Bottom: Black edges indicating those in the non-switching condition but not in the switching and red vice versa.

Often with MEG data, many of the dimensions are domi-
nated by noise due to limited brain activity in that region.
We reduced the number of brain regions we studied from
150 to 50 by only considering those with largest variance.
In particular, for each trial we mean-centered all of the
time-series and computed the variance and retained the top
50 most volatile regions.

We computed the periodogram for each trial and averaged
across trials within each condition, resulting in eight peri-
odograms. We ran our spectral TGS version of the FINCS
algorithm on these periodograms for 100,000 iterations
with fractional prior parameter 4/Nc, where Nc is the num-
ber of trials for condition c 2 {S, N} ⇥ {U, D, L, R}. We
also ran the algorithm for 1.7 million iterations and saw no
difference in the resulting graphs.

In Figure 4, we depict the intersections and differences be-
tween the learned graphs for each experimental condition.
We see in the top row that there are a lot of shared connec-
tions between the switching and non-switching conditions
for each auditory condition. In the bottom row, the differ-
ences between the switching and non-switching conditions
are depicted where red edges are those in the switching
condition but not the non-switching, and black edges are
the reverse. The difference plots show that there seems to
be substantial “rewiring” for many of the conditions with
many edges connecting frontal to back regions. Interest-
ingly, we again see consistencies in these rewirings across
conditions. Such observations provide guidance for devel-
oping experiments and methods to discern the underlying
mechanisms that give rise to these different structures.

9 Discussion

We introduced a Bayesian approach to graphical model
structure learning for time series. In particular, we propose
a prior—the hyper complex inverse Wishart distribution—
for the spectral density matrices in a Whittle likelihood ap-
proximation. For decomposable graphs, this prior is conju-
gate and leads to a closed-form expression of the marginal
likelihood of the time series given the graph, marginalizing
the spectral density matrices across frequencies. Being able
to integrate out this large collection of complex matrices—
one for each time point—is critical to developing a prac-
tical and scalable inference algorithm. For this, exploiting
the fact that our marginal likelihood is analogous to that for
i.i.d. Gaussian graphical models [19] but with a product
over the number of Fourier frequencies, allows us to de-
ploy straightforward modifications to existing MCMC and
stochastic search algorithms. Our simulations show that
when many time series are observed, our method recovers
the correct graph. When a single time series is observed,
we proposed a method to increase robustness of our graph
estimation using a piecewise constant prior. Our results on
the stock and MEG datasets demonstrated our ability to dis-
cover intuitive and interpretable structure in these datasets,
importantly leveraging the temporal dependencies.

Extensions to non-decomposable graphs are possible us-
ing the i.i.d. graph approaches in both [30] and [22].
A Laplace approximation to the marginal likelihood for
non-decomposable graphs is proposed in [22], which
we could similarly utilize to approximate the frequency-
specific marginal at each term in Equation (17). Paral-
lelizing the Laplace approximation computation across fre-
quencies would lead to a scalable method for inference in
non-decomposable time series graphs.



Graphs	  of	  Time	  Series	  Summary	  

•  Goal:	  Infer	  condi.onal	  independencies	  between	  .me	  series	  
•  Efficient	  representa.on	  via	  spectral	  density	  matrix	  

–  Condi.onal	  independencies	  encoded	  by	  zeros	  in	  inverse	  spectral	  density	  matrices	  

•  Whizle	  likelihood	  approxima.on	  defines	  tractable	  likelihood	  of	  data	  
(Fourier	  coefficients)	  given	  spectral	  density	  matrices	  

•  Defined	  hyper	  complex	  inverse	  Wishart	  prior	  
–  Conjugate	  prior	  on	  graph-‐constrained	  spectral	  density	  matrices	  
–  Enables	  closed-‐form	  marginal	  likelihood	  of	  data	  given	  graph	  
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Graphical	  

Model	  

Zeros	  =	  no	  edge	  in	  graph,	  
Cond.	  ind.	  between	  nodes	  

sparse	  



time t 

yt

Modeling	  challenges:	  
•  Large	  p	  –	  Many	  dimensions/series	  
•  Irregular	  grid	  of	  observa.ons	  
•  Missing	  values	  
•  Heterogeneous	  data	  sources	  
•  ...	  	  

…	  

Computa:onal	  challenges:	  
•  Large	  n	  –	  Long	  .me	  series	  
•  Streaming	  data	  –	  	  

Con.nuum	  of	  observa.ons	  

Goals:	  
•  Evolu.on	  –	  	  Dynamics	  across	  .me	  
•  Rela.onal	  structure	  –	  Dependencies	  between	  series	  



Minibatch-‐Based	  Algorithms	  

•  Many	  ML/stat	  algorithms	  (e.g.,	  gradient	  descent,	  Gibbs	  
sampling,…)	  iterate	  between	  
–  opera.ons	  involving	  all	  data	  
–  upda.ng	  parameters	  

•  Costly	  for	  large	  data	  /	  infeasible	  for	  streaming	  data	  

•  Common	  approach	  for	  scalability:	  	  
–  subsample	  data	  à	  noisy	  opera.on	  
–  noisy	  update	  of	  parameters	  

Stochastic variational inference

SUBSAMPLE 
DATA

INFER 
LOCAL 

STRUCTURE

UPDATE 
GLOBAL 

STRUCTURE

1 A generic class of models

2 Classical mean-field variational inference

3 Stochastic variational inference

4 Extensions and open issues

(Hoffman et al., 2013)

Not	  appropriate	  for	  	  
dependent	  data	  



Hidden	  Markov	  Models	  (HMMs)	  
discrete state sequence 

observations 

transition probabilities, 
observation parameters 



p(y,x, ✓) = p(✓)⇡(x1)
TY

t=2

p(xt | xt�1, ✓A)p(yt | xt, ✓�)

• Why	  not	  just	  subsample	  observa.ons	  independently?	  

• Cannot	  learn	  transi.on	  structure	  

Minibatches	  for	  HMMs	  



• How	  about	  sampling	  subchain?	  

• Do	  we	  just	  sever	  dependencies	  between	  subchains	  and	  
analyze	  separately?	  

Minibatches	  for	  HMMs	  



Large	  Collec.ons	  of	  Short	  Chains	  

...

Johnson	  and	  Willsky,	  	  
ICML	  2014	  

Hughes	  et	  al.,	  	  
preprint	  



One	  Long	  Chain	  



Batch	  Learning	  for	  HMMs	  

•  Use	  current	  	  	  	  	  to	  form	  local	  state	  beliefs:	  
–  Propagate	  info	  forwards	  to	  form	   p(y1, . . . , yt, xt)

✓
↵t =

↵t+1,k = p(yt+1 | xt+1 = k)
KX

j=1

↵t,jp(xt+1 = k | xt = j)



�t = p(yt+1, . . . , yT | xt)
•  Use	  current	  	  	  	  	  to	  form	  local	  state	  beliefs:	  

–  Propagate	  info	  backwards	  

Batch	  Learning	  for	  HMMs	  

✓
�t =

�t,k =
KX

j=1

p(yt+1 | xt+1 = j)p(xt+1 = j | xt = k)�t+1,k



Batch	  Learning	  for	  HMMs	  

•  Combine	  to	  form	  smoothed	  local	  state	  belief:	  

p(xt | y1, . . . , yT )



•  Given	  local	  beliefs,	  update	  global	  parameter	  

Batch	  Learning	  for	  HMMs	  

Issue:	  Cost	  is	  O(K2T)	  per	  global	  update!	  
	  

Costly	  when	  using	  uninformed	  ini.aliza.ons	  	  
or	  observa.ons	  are	  redundant	  

T	  =	  250	  million	  



• Form	  local	  beliefs	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	  	  

Minibatch	  Inference	  for	  HMMs	  
q(xt)q(xt�1) q(xt+1)info	   info	  

à	  perform	  global	  update	  

Local	  forward	  message	   Local	  backward	  message	  



Storage	  Limita.ons	  
•  Can	  local	  message	  passing	  harness	  previous	  beliefs	  on	  
nodes	  outside	  the	  subchain?	  

•  T=250	  M	  obs	  x	  K=25	  latent	  states	  	  
•  Need	  constant	  space	  algorithm	  	  
à	  can’t	  remember	  past	  beliefs	  

q(xt)q(xt�1) q(xt+1)

From	  previous	  
examinaJon	  of	  
other	  subchains	  

	  

q

0(xt+2)q

0(xt�2)

NO!	  

25	  GB	  storage	  



Harnessing	  Memory	  Decay	  

Do we expect     to influence                  ? 

True beliefs 

Approximate 
beliefs 

Leverage memory decay 



Buffering	  Subchains	  

Check that subchain marginals are approximated well: 



Buffering	  Subchains	  

? 



Buffering	  Subchains	  

? 



Buffering	  Subchains	  

? 

	  
–	  Only	  need	  limited	  buffer	  

	  
	  

–	  Complexity	  is	  now	  O(K2Lbuffer)	  per	  itera:on	  
	  

Large	  savings	  for	  L+buffer	  <<	  T	  
	  

–	  Similar	  idea	  as	  Splash	  BP	  (parallelizing	  BP)	  
[Gonzalez,	  et.	  al.	  2009]	  

	  

But,	  uncertain	  parameter	  se]ng	  here	  
	  
	  



Buffering	  for	  Learning	  

q(✓)



Buffering	  in	  Prac.ce	  
•  We	  do	  not	  actually	  know	  the	  true	  marginals	  
•  Monitor	  changes	  in	  approximate	  subchain	  beliefs:	  

•  Chain	  structuring	  implies	  that	  only	  endpoints	  must	  be	  
checked	  
	  
	  
	  
	  

•  During	  buffer	  expansions,	  forward-‐backward	  passes	  
can	  reuse	  computa.ons	  of	  previous	  buffer	  



Varia.onal	  Bayes	  (VB)	  

•  Approximate	  posterior	  with	  varia.onal	  distribu.on	  

	  

•  Minimize	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  maximize	  “ELBO”:	  

•  Common	  to	  make	  mean-‐field	  assump.on:	  

latent variables 

parameters 

observations 



Varia.onal	  Methods	  Cartoon	  
•  Cartoon	  of	  goal:	  

•  Varia.onal	  distribu.on	  parameterized	  by	  variaJonal	  free	  parameters	  
•  ObjecJve:	  opJmize	  over	  free	  parameters	  to	  find	  “closest”	  distribuJon	  in	  variaJonal	  

family	  



L = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+
TX

i=1

E

q(xi) [ln p(yi, xi

|✓)]� E

q(xi) [ln q(xi

)]

VB	  Example:	  Mixture	  of	  Gaussians	  

… 

Maximize ELBO with coordinate-ascent 

cluster  
labels 

obs. 

cluster params 

… 

@L
@q(x)

= 0
@L

@q(✓)
= 0



•  Batch	  VB	  global	  step	  requires	  touching	  all	  of	  the	  data	  

•  SVI	  uses	  stochas.c	  gradient	  descent	  (SGD)	  for	  global	  
update	  [Hoffman,	  et.	  al.	  2013]	  
–  Sample	  observa.on:	  	  
–  Follow	  noisy,	  unbiased	  es.mate	  of	  natural	  gradient	  of	  	  

Stochas.c	  Varia.onal	  Inference	  (SVI)	  

L = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+
TX

i=1

E

q(xi) [ln p(yi, xi

|✓)]� E

q(xi) [ln q(xi

)]

w(t) = w(t�1) + ⇢tr̃wLS ES [r̃wLS ] = r̃wL
q(✓)Varia.onal	  parameters	  defining	  	  



SVI	  Example:	  Mixture	  of	  Gaussians	  
Maximize ELBO with stochastic gradient descent 

… cluster  
labels 

obs. 

cluster params 

… 

Ls = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+ T ·
�
E

q(xs) [ln p(ys, xs

|✓)]� E

q(xs) [ln q(xs

)]
�

w(t) = w(t�1) + ⇢tr̃wLS@Ls

@q(xs)
= 0

Hyperparams	  for	  q(θ)	  



Structured	  Mean	  Field	  Approxima.on	  

•  Use	  structured	  mean-‐field	  approxima.on:	  
p(x1, x2, . . . , xT , ✓ | y1, y2 . . . , yT ) ⇡ q(x1, x2, . . . , xT )q(✓)



SVI	  for	  HMMs	  

q(✓)
w(t) = w(t�1) + ⇢tr̃wLSStochas.c	  natural	  

gradient	  step:	  
q(x)

Func.on	  of	  

	  
	  

(Approx)	  coordinate	  
ascent	  step:	  

↵t+1,k = p(yt+1 | xt+1 = k)
KX

j=1

↵t,jAj,k

�t,k =
KX

j=1

p(yt+1 | xt+1 = j)Ak,j�t+1,k

Func.on	  of	  
q(✓)

Foti, Xu, Laird, Fox, NIPS 2014 



Differences	  from	  i.i.d.	  Case	  

•  Minibatches	  are	  correlated	  
– Data	  in	  one	  is	  not	  independent	  of	  data	  in	  another	  

•  Minibatch	  marginals	  ≠	  batch	  marginals	  
–  Impact	  of	  latent	  chain	  
– Mi.gated	  by	  buffering	  



Correlated	  Minibatches	  
•  Pretend	  we	  have	  exact	  local	  distribu.on	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

•  Typical	  arguments	  for	  convergence	  to	  local	  mode	  rely	  on	  
unbiased	  +	  independent	  noisy	  gradients	  [c.f.,	  Bozou	  1998,	  Hoffman	  2013]	  

–  Our	  SGs	  are	  dependent	  since	  subchains	  are	  correlated	  
•  Using	  [Polyak	  and	  Tsypkin	  1973],	  unbiasedness	  suffices	  for	  
convergence	  of	  	  

As	  if	  we	  had	  run	  batch	  
forward-‐backward	  

	  

w(t) = w(t�1) + ⇢tr̃wLS



Global	  Update	  –	  Unbiasedness	  
•  In	  mixture	  model	  case	  with	  uniform	  sampling	  of	  
observa:on	  s,	  unbiasedness	  was	  preserved	  via:	  

•  In	  HMM	  case,	  our	  ELBO	  data	  term	  is	  

	  
–  Does	  not	  decompose	  over	  individual	  
–  Need	  to	  scale	  transi.on	  and	  emission	  terms	  separately	  

•  Straigh�orward	  for	  uniform	  sampling	  of	  subchains	  S	  of	  
length	  L,	  assuming	  chain	  is	  observed	  at	  staJonarity	  

Ls = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+ T ·
�
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Effect	  of	  Approximated	  Marginals	  

For	  	  	  	  	  sufficiently	  small	  (sufficiently	  long	  buffer)	  
–  Approximate	  marginals	  “close	  enough”	  to	  true	  marginals	  
–  Noisy	  gradient	  in	  same	  half-‐plane	  as	  true	  gradient	  

	  
	  

itera.ve	  algorithm	  converges	  to	  local	  mode	  of	  ELBO	  

Foti, Xu, Laird, Fox, NIPS 2014 

SVI-‐HMM	  iterates:	  	  
	  buffer	  minibatches	  to	  approx	  q(x)	  	  	  	  	  	  	  	  update	  q(Θ)	  

coordinate	  gradient	  step	   stochasJc	  
(natural)	  gradient	  step	  

✏



Experiments	  

•  Synthe.c	  data:	  
– Diagonally	  Dominant:	  	  Long	  memory	  chain	  with	  
large	  self-‐transi.ons	  

– Reversed	  Cycles:	  	  Two	  overlapping	  cycles	  with	  
opposite	  direc.ons	  

•  Human	  chroma:n	  applica:on	  



Minibatch	  consists	  of	  M	  subchains	  each	  of	  length	  L	  

Minibatch	  of	  Subchains	  



Diagonally	  Dominant	  
•  8	  latent	  states	  
•  2d	  Gaussian	  
emissions	  

•  High	  auto-‐correlaJon	  	  
è	  few	  long	  subchains	  	  
	  	  	  	  	  converge	  slowly	  
	  	  	  	  	  (small	  M,	  large	  L)	  

•  Emissions	  idenJfiable	  
	  è	  many	  small	  subchains	  	  
	  	  	  	  	  	  	  perform	  bezer	  
	  	  	  	  	  	  	  (large	  M,	  small	  L)	  	  
	  



Reversed	  Cycles	  
• 8	  latent	  states	  
• 2d	  Gaussian	  emissions	  

•  Emission	  distribuJons	  overlap	  

•  DirecJon	  of	  cycles	  important	  to	  
iden.fy	  states	  

§  Singleton	  observa.ons	  insufficient	  
§  Without	  buffering,	  need	  L	  >	  3	  to	  

learn	  effec.vely	  

•  Longer	  subchains	  more	  likely	  to	  
capture	  structure	  
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Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.

Acknowledgements

This work was supported in part by the TerraSwarm Research Center sponsored by MARCO and DARPA,
DARPA Grant FA9550-12-1-0406 negotiated by AFOSR, and NSF CAREER Award IIS-1350133. JX was
supported by an NDSEG fellowship. We also appreciate the data, discussions, and guidance on the ENCODE
project provided by Max Libbrecht and William Noble.

1Other parameter settings were explored.

8

w/	  buffer	  

Subchain	  Buffering	  
L=3 L=7 L=21 

w/o	  buffer	  

batch	  
VB	  



•  Chromosome	  data	  
from	  ENCODE	  project	  

•  12	  dimensional	  
observa.ons	  

•  Goal:	  	  segment	  
sequences	  

•  T	  =	  250	  million	  

•  [Hoffman	  et.	  al.	  2012]	  used	  dynamic	  Bayesian	  network	  	  
§  Broke	  sequence	  into	  pieces	  to	  perform	  inference	  via	  EM	  
§  Severs	  long-‐range	  dependencies	  

• Adap.ve	  subsampling	  on	  HMM	  (simpler	  model)	  
	  	  	  	  Run.me	  =	  days	  

Human	  Chroma.n	  Segmenta.on	  

Run.me	  =	  under	  1	  hr	  

•  Lower	  FDR	  of	  promoters	  

•  Simpler	  model	  
•  Uses	  all	  of	  the	  data	  



BNP	  and	  Other	  Extensions	  

•  Presented	  finite	  HMM	  case,	  	  
but	  ideas	  could	  generalize	  to:	  
–  Nonparametric	  HMMs	  

•  Trunca.on	  plus	  split-‐merge	  to	  
change	  the	  number	  of	  states	  	  
[Bryant	  &	  Sudderth,	  2012]	  

–  DBN	  and	  MRF	  models	  

•  Applica.ons	  to:	  	  
–  Large	  spa.al	  fields	  
–  Spa.o-‐temporal	  data,	  etc.	  



Overall	  Summary	  
•  Scalable	  Bayesian	  dynamic	  modeling:	  

–  Low-‐dimensional	  embeddings	  with	  applica.on	  to	  MEG	  word	  
classifica.on	  

–  Clusters	  for	  forming	  high-‐resolu.on	  housing	  value	  index	  
–  Graphs	  of	  Jme	  series	  with	  applica.on	  to	  stocks	  +	  func.onal	  
connec.vity	  

•  Scalable	  Bayesian	  computa.ons	  in	  dynamic	  models	  
–  Harness	  memory	  decay	  to	  use	  subset-‐based	  methods	  in	  HMMs	  
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Figure 4: Learned TGMs for different MEG conditions. Each node on the periphery represents a brain region with loca-
tion indicating anatomical location. Top: Intersection of learned edges between switching and non-switching conditions.
Bottom: Black edges indicating those in the non-switching condition but not in the switching and red vice versa.

Often with MEG data, many of the dimensions are domi-
nated by noise due to limited brain activity in that region.
We reduced the number of brain regions we studied from
150 to 50 by only considering those with largest variance.
In particular, for each trial we mean-centered all of the
time-series and computed the variance and retained the top
50 most volatile regions.

We computed the periodogram for each trial and averaged
across trials within each condition, resulting in eight peri-
odograms. We ran our spectral TGS version of the FINCS
algorithm on these periodograms for 100,000 iterations
with fractional prior parameter 4/Nc, where Nc is the num-
ber of trials for condition c 2 {S, N} ⇥ {U, D, L, R}. We
also ran the algorithm for 1.7 million iterations and saw no
difference in the resulting graphs.

In Figure 4, we depict the intersections and differences be-
tween the learned graphs for each experimental condition.
We see in the top row that there are a lot of shared connec-
tions between the switching and non-switching conditions
for each auditory condition. In the bottom row, the differ-
ences between the switching and non-switching conditions
are depicted where red edges are those in the switching
condition but not the non-switching, and black edges are
the reverse. The difference plots show that there seems to
be substantial “rewiring” for many of the conditions with
many edges connecting frontal to back regions. Interest-
ingly, we again see consistencies in these rewirings across
conditions. Such observations provide guidance for devel-
oping experiments and methods to discern the underlying
mechanisms that give rise to these different structures.

9 Discussion

We introduced a Bayesian approach to graphical model
structure learning for time series. In particular, we propose
a prior—the hyper complex inverse Wishart distribution—
for the spectral density matrices in a Whittle likelihood ap-
proximation. For decomposable graphs, this prior is conju-
gate and leads to a closed-form expression of the marginal
likelihood of the time series given the graph, marginalizing
the spectral density matrices across frequencies. Being able
to integrate out this large collection of complex matrices—
one for each time point—is critical to developing a prac-
tical and scalable inference algorithm. For this, exploiting
the fact that our marginal likelihood is analogous to that for
i.i.d. Gaussian graphical models [19] but with a product
over the number of Fourier frequencies, allows us to de-
ploy straightforward modifications to existing MCMC and
stochastic search algorithms. Our simulations show that
when many time series are observed, our method recovers
the correct graph. When a single time series is observed,
we proposed a method to increase robustness of our graph
estimation using a piecewise constant prior. Our results on
the stock and MEG datasets demonstrated our ability to dis-
cover intuitive and interpretable structure in these datasets,
importantly leveraging the temporal dependencies.

Extensions to non-decomposable graphs are possible us-
ing the i.i.d. graph approaches in both [30] and [22].
A Laplace approximation to the marginal likelihood for
non-decomposable graphs is proposed in [22], which
we could similarly utilize to approximate the frequency-
specific marginal at each term in Equation (17). Paral-
lelizing the Laplace approximation computation across fre-
quencies would lead to a scalable method for inference in
non-decomposable time series graphs.


