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Abstract

Much of current machine learning (ML) re-
search has lost its connection to problems of
import to the larger world of science and so-
ciety. From this perspective, there exist glar-
ing limitations in the data sets we investi-
gate, the metrics we employ for evaluation,
and the degree to which results are commu-
nicated back to their originating domains.
What changes are needed to how we con-
duct research to increase the impact that ML
has? We present six Impact Challenges to ex-
plicitly focus the field’s energy and attention,
and we discuss existing obstacles that must
be addressed. We aim to inspire ongoing dis-
cussion and focus on ML that matters.

1. Introduction

At one time or another, we all encounter a friend,
spouse, parent, child, or concerned citizen who, upon
learning that we work in machine learning, wonders
“What’s it good for?” The question may be phrased
more subtly or elegantly, but no matter its form, it gets
at the motivational underpinnings of the work that we
do. Why do we invest years of our professional lives
in machine learning research? What difference does it
make, to ourselves and to the world at large?

Much of machine learning (ML) research is inspired
by weighty problems from biology, medicine, finance,
astronomy, etc. The growing area of computational
sustainability (Gomes, 2009) seeks to connect ML ad-
vances to real-world challenges in the environment,
economy, and society. The CALO (Cognitive Assistant
that Learns and Organizes) project aimed to integrate
learning and reasoning into a desktop assistant, poten-
tially impacting everyone who uses a computer (SRI
International, 2003–2009). Machine learning has effec-
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tively solved spam email detection (Zdziarski, 2005)
and machine translation (Koehn et al., 2003), two
problems of global import. And so on.

And yet we still observe a proliferation of published
ML papers that evaluate new algorithms on a handful
of isolated benchmark data sets. Their “real world”
experiments may operate on data that originated in
the real world, but the results are rarely communicated
back to the origin. Quantitative improvements in per-
formance are rarely accompanied by an assessment of
whether those gains matter to the world outside of
machine learning research.

This phenomenon occurs because there is no
widespread emphasis, in the training of graduate stu-
dent researchers or in the review process for submitted
papers, on connecting ML advances back to the larger
world. Even the rich assortment of applications-driven
ML research often fails to take the final step to trans-
late results into impact.

Many machine learning problems are phrased in terms
of an objective function to be optimized. It is time for
us to ask a question of larger scope: what is the field’s
objective function? Do we seek to maximize perfor-
mance on isolated data sets? Or can we characterize
progress in a more meaningful way that measures the
concrete impact of machine learning innovations?

This short position paper argues for a change in how
we view the relationship between machine learning and
science (and the rest of society). This paper does not
contain any algorithms, theorems, experiments, or re-
sults. Instead it seeks to stimulate creative thought
and research into a large but relatively unaddressed is-
sue that underlies much of the machine learning field.
The contributions of this work are 1) the clear identifi-
cation and description of a fundamental problem: the
frequent lack of connection between machine learning
research and the larger world of scientific inquiry and
humanity, 2) suggested first steps towards addressing
this gap, 3) the issuance of relevant Impact Challenges
to the machine learning community, and 4) the iden-
tification of several key obstacles to machine learning



Machine Learning that Matters

impact, as an aid for focusing future research efforts.
Whether or not the reader agrees with all statements
in this paper, if it inspires thought and discussion, then
its purpose has been achieved.

2. Machine Learning for Machine
Learning’s Sake

This section highlights aspects of the way ML research
is conducted today that limit its impact on the larger
world. Our goal is not to point fingers or critique indi-
viduals, but instead to initiate a critical self-inspection
and constructive, creative changes. These problems do
not trouble all ML work, but they are common enough
to merit our effort in eliminating them.

The argument here is also not about “theory versus
applications.” Theoretical work can be as inspired by
real problems as applied work can. The criticisms here
focus instead on the limitations of work that lies be-
tween theory and meaningful applications: algorith-
mic advances accompanied by empirical studies that
are divorced from true impact.

2.1. Hyper-Focus on Benchmark Data Sets

Increasingly, ML papers that describe a new algorithm
follow a standard evaluation template. After present-
ing results on synthetic data sets to illustrate certain
aspects of the algorithm’s behavior, the paper reports
results on a collection of standard data sets, such as
those available in the UCI archive (Frank & Asuncion,
2010). A survey of the 152 non-cross-conference pa-
pers published at ICML 2011 reveals:

148/152 (93%) include experiments of some sort
57/148 (39%) use synthetic data
55/148 (37%) use UCI data
34/148 (23%) use ONLY UCI and/or synthetic data
1/148 (1%) interpret results in domain context

The possible advantages of using familiar data sets in-
clude 1) enabling direct empirical comparisons with
other methods and 2) greater ease of interpreting
the results since (presumably) the data set properties
have been widely studied and understood. However,
in practice direct comparisons fail because we have
no standard for reproducibility. Experiments vary in
methodology (train/test splits, evaluation metrics, pa-
rameter settings), implementations, or reporting. In-
terpretations are almost never made. Why is this?

First, meaningful interpretations are hard. Virtually
none of the ML researchers who work with these data
sets happen to also be experts in the relevant scientific
disciplines. Second, and more insidiously, the ML field
neither motivates nor requires such interpretation. Re-

viewers do not inquire as to which classes were well
classified and which were not, what the common er-
ror types were, or even why the particular data sets
were chosen. There is no expectation that the au-
thors report whether an observed x% improvement in
performance promises any real impact for the original
domain. Even when the authors have forged a col-
laboration with qualified experts, little paper space is
devoted to interpretation, because we (as a field) do
not require it.

The UCI archive has had a tremendous impact on the
field of machine learning. Legions of researchers have
chased after the best iris or mushroom classifier. Yet
this flurry of effort does not seem to have had any im-
pact on the fields of botany or mycology. Do scientists
in these disciplines even need such a classifier? Do
they publish about this subject in their journals?

There is not even agreement in the community about
what role the UCI data sets serve (benchmark? “real-
world”?). They are of less utility than synthetic data,
since we did not control the process that generated
them, and yet they fail to serve as real world data
due to their disassociation from any real world con-
text (experts, users, operational systems, etc.). It is
as if we have forgotten, or chosen to ignore, that each
data set is more than just a matrix of numbers. Fur-
ther, the existence of the UCI archive has tended to
over-emphasize research effort on classification and re-
gression problems, at the expense of other ML prob-
lems (Langley, 2011). Informal discussions with other
researchers suggest that it has also de-emphasized the
need to learn how to formulate problems and de-
fine features, leaving young researchers unprepared to
tackle new problems.

This trend has been going on for at least 20 years.
Jaime Carbonell, then editor of Machine Learning,
wrote in 1992 that “the standard Irvine data sets are
used to determine percent accuracy of concept clas-
sification, without regard to performance on a larger
external task” (Carbonell, 1992). Can we change that
trend for the next 20 years? Do we want to?

2.2. Hyper-Focus on Abstract Metrics

There are also problems with how we measure per-
formance. Most often, an abstract evaluation metric
(classification accuracy, root of the mean squared er-
ror or RMSE, F-measure (van Rijsbergen, 1979), etc.)
is used. These metrics are abstract in that they ex-
plicitly ignore or remove problem-specific details, usu-
ally so that numbers can be compared across domains.
Does this seemingly obvious strategy provide us with
useful information?
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Figure 1. Three stages of a machine learning research program. Current publishing incentives are highly biased towards
the middle row only.

It is recognized that the performance obtained by
training a modelM on data set X may not reflectM’s
performance on other data sets drawn from the same
problem, i.e., training loss is an underestimate of test
loss (Hastie et al., 2001). Strategies such as splitting
X into training and test sets or cross-validation aim
to estimate the expected performance of M′, trained
on all of X, when applied to future data X ′.

However, these metrics tell us nothing about the im-
pact of different performance. For example, 80% ac-
curacy on iris classification might be sufficient for the
botany world, but to classify as poisonous or edible
a mushroom you intend to ingest, perhaps 99% (or
higher) accuracy is required. The assumption of cross-
domain comparability is a mirage created by the appli-
cation of metrics that have the same range, but not the
same meaning. Suites of experiments are often sum-
marized by the average accuracy across all data sets.
This tells us nothing at all useful about generalization
or impact, since the meaning of an x% improvement
may be very different for different data sets. A related
problem is the persistence of “bake-offs” or “mind-
less comparisons among the performance of algorithms
that reveal little about the sources of power or the ef-
fects of domain characteristics” (Langley, 2011).

Receiver Operating Characteristic (ROC) curves are
used to describe a system’s behavior for a range of
threshold settings, but they are rarely accompanied
by a discussion of which performance regimes are rele-
vant to the domain. The common practice of reporting
the area under the curve (AUC) (Hanley & McNeil,
1982) has several drawbacks, including summarizing
performance over all possible regimes even if they are
unlikely ever to be used (e.g., extremely high false pos-
itive rates), and weighting false positives and false neg-
atives equally, which may be inappropriate for a given
problem domain (Lobo et al., 2008). As such, it is in-
sufficiently grounded to meaningfully measure impact.

Methods from statistics such as the t-test (Student,
1908) are commonly used to support a conclusion
about whether a given performance improvement is
“significant” or not. Statistical significance is a func-
tion of a set of numbers; it does not compute real-world
significance. Of course we all know this, but it rarely
inspires the addition of a separate measure of (true)
significance. How often, instead, a t-test result serves
as the final punctuation to an experimental utterance!

2.3. Lack of Follow-Through

It is easy to sit in your office and run a Weka (Hall
et al., 2009) algorithm on a data set you downloaded
from the web. It is very hard to identify a problem
for which machine learning may offer a solution, de-
termine what data should be collected, select or ex-
tract relevant features, choose an appropriate learning
method, select an evaluation method, interpret the re-
sults, involve domain experts, publicize the results to
the relevant scientific community, persuade users to
adopt the technique, and (only then) to truly have
made a difference (see Figure 1). An ML researcher
might well feel fatigued or daunted just contemplating
this list of activities. However, each one is a necessary
component of any research program that seeks to have
a real impact on the world outside of machine learning.

Our field imposes an additional obstacle to impact.
Generally speaking, only the activities in the middle
row of Figure 1 are considered “publishable” in the ML
community. The Innovative Applications of Artificial
Intelligence conference and International Conference
on Machine Learning and Applications are exceptions.
The International Conference on Machine Learning
(ICML) experimented with an (unreviewed) “invited
applications” track in 2010. Yet to be accepted as a
mainstream paper at ICML or Machine Learning or
the Journal of Machine Learning Research, authors
must demonstrate a “machine learning contribution”
that is often narrowly interpreted by reviewers as “the
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development of a new algorithm or the explication of a
novel theoretical analysis.” While these are excellent,
laudable advances, unless there is an equal expectation
for the bottom row of Figure 1, there is little incentive
to connect these advances with the outer world.

Reconnecting active research to relevant real-world
problems is part of the process of maturing as a re-
search field. To the rest of the world, these are the
only visible advances of ML, its only contributions to
the larger realm of science and human endeavors.

3. Making Machine Learning Matter

Rather than following the letter of machine learning,
can we reignite its spirit? This is not simply a matter
of reporting on isolated applications. What is needed
is a fundamental change in how we formulate, attack,
and evaluate machine learning research projects.

3.1. Meaningful Evaluation Methods

The first step is to define or select evaluation meth-
ods that enable direct measurement, wherever possi-
ble, of the impact of ML innovations. In addition to
traditional measures of performance, we can measure
dollars saved, lives preserved, time conserved, effort
reduced, quality of living increased, and so on. Focus-
ing our metrics on impact will help motivate upstream
restructuring of research efforts. They will guide how
we select data sets, structure experiments, and define
objective functions. At a minimum, publications can
report how a given improvement in accuracy translates
to impact for the originating problem domain.

The reader may wonder how this can be accomplished,
if our goal is to develop general methods that ap-
ply across domains. Yet (as noted earlier) the com-
mon approach of using the same metric for all do-
mains relies on an unstated, and usually unfounded,
assumption that it is possible to equate an x% im-
provement in one domain with that in another. In-
stead, if the same method can yield profit improve-
ments of $10,000 per year for an auto-tire business as
well as the avoidance of 300 unnecessary surgical in-
terventions per year, then it will have demonstrated a
powerful, wide-ranging utility.

3.2. Involvement of the World Outside ML

Many ML investigations involve domain experts as col-
laborators who help define the ML problem and label
data for classification or regression tasks. They can
also provide the missing link between an ML perfor-
mance plot and its significance to the problem domain.
This can help reduce the number of cases where an ML

system perfectly solves a sub-problem of little interest
to the relevant scientific community, or where the ML
system’s performance appears good numerically but is
insufficiently reliable to ever be adopted.

We could also solicit short “Comment” papers, to ac-
company the publication of a new ML advance, that
are authored by researchers with relevant domain ex-
pertise but who were uninvolved with the ML research.
They could provide an independent assessment of the
performance, utility, and impact of the work. As
an additional benefit, this informs new communities
about how, and how well, ML methods work. Rais-
ing awareness, interest, and buy-in from ecologists,
astronomers, legal experts, doctors, etc., can lead to
greater opportunities for machine learning impact.

3.3. Eyes on the Prize

Finally, we should consider potential impact when se-
lecting which research problems to tackle, not merely
how interesting or challenging they are from the ML
perspective. How many people, species, countries, or
square meters would be impacted by a solution to the
problem? What level of performance would constitute
a meaningful improvement over the status quo?

Warrick et al. (2010) provides an example of ML work
that tackles all three aspects. Working with doctors
and clinicians, they developed a system to detect fetal
hypoxia (oxygen deprivation) and enable emergency
intervention that literally saves babies from brain in-
juries or death. After publishing their results, which
demonstrated the ability to have detected 50% of fe-
tal hypoxia cases early enough for intervention, with
an acceptable false positive rate of 7.5%, they are cur-
rently working on clinical trials as the next step to-
wards wide deployment. Many such examples exist.
This paper seeks to inspire more.

4. Machine Learning Impact Challenges

One way to direct research efforts is to articulate am-
bitious and meaningful challenges. In 1992, Carbonell
articulated a list of challenges for the field, not to in-
crease its impact but instead to “put the fun back into
machine learning” (Carbonell, 1992). They included:

1. Discovery of a new physical law leading to a pub-
lished, referred scientific article.

2. Improvement of 500 USCF/FIDE chess rating
points over a class B level start.

3. Improvement in planning performance of 100 fold
in two different domains.

4. Investment earnings of $1M in one year.
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5. Outperforming a hand-built NLP system on a
task such as translation.

6. Outperforming all hand-built medical diagnosis
systems with an ML solution that is deployed and
regularly used at at least two institutions.

Because impact was not the guiding principle, these
challenges range widely along that axis. An improved
chess player might arguably have the lowest real-world
impact, while a medical diagnosis system in active use
could impact many human lives.

We therefore propose the following six Impact Chal-
lenges as examples of machine learning that matters:

1. A law passed or legal decision made that relies on
the result of an ML analysis.

2. $100M saved through improved decision making
provided by an ML system.

3. A conflict between nations averted through high-
quality translation provided by an ML system.

4. A 50% reduction in cybersecurity break-ins
through ML defenses.

5. A human life saved through a diagnosis or inter-
vention recommended by an ML system.

6. Improvement of 10% in one country’s Human De-
velopment Index (HDI) (Anand & Sen, 1994) at-
tributable to an ML system.

These challenges seek to capture the entire process
of a successful machine learning endeavor, including
performance, infusion, and impact. They differ from
existing challenges such as the DARPA Grand Chal-
lenge (Buehler et al., 2007), the Netflix Prize (Bennett
& Lanning, 2007), and the Yahoo! Learning to Rank
Challenge (Chapelle & Chang, 2011) in that they do
not focus on any single problem domain, nor a par-
ticular technical capability. The goal is to inspire the
field of machine learning to take the steps needed to
mature into a valuable contributor to the larger world.

No such list can claim to be comprehensive, including
this one. It is hoped that readers of this paper will
be inspired to formulate additional Impact Challenges
that will benefit the entire field.

Much effort is often put into chasing after goals in
which an ML system outperforms a human at the same
task. The Impact Challenges in this paper also differ
from that sort of goal in that human-level performance
is not the gold standard. What matters is achieving
performance sufficient to make an impact on the world.
As an analogy, consider a sick child in a rural setting.
A neighbor who runs two miles to fetch the doctor
need not achieve Olympic-level running speed (perfor-
mance), so long as the doctor arrives in time to address
the sick child’s needs (impact).

5. Obstacles to ML Impact

Let us imagine a machine learning researcher who is
motivated to tackle problems of widespread interest
and impact. What obstacles to success can we foresee?
Can we set about eliminating them in advance?
Jargon. This issue is endemic to all specialized re-
search fields. Our ML vocabulary is so familiar that it
is difficult even to detect when we’re using a special-
ized term. Consider a handful of examples: “feature
extraction,” “bias-variance tradeoff,” “ensemble meth-
ods,” “cross-validation,” “low-dimensional manifold,”
“regularization,” “mutual information,” and “kernel
methods.” These are all basic concepts within ML
that create conceptual barriers when used glibly to
communicate with others. Terminology can serve as
a barrier not just for domain experts and the general
public but even between closely related fields such as
ML and statistics (van Iterson et al., 2012). We should
explore and develop ways to express the same ideas in
more general terms, or even better, in terms already
familiar to the audience. For example, “feature ex-
traction” can be termed “representation;” the notion
of “variance” can be “instability;” “cross-validation”
is also known as “rotation estimation” outside of ML;
“regularization” can be explained as “choosing simpler
models;” and so on. These terms are not as precise,
but more likely to be understood, from which a con-
versation about further subtleties can ensue.
Risk. Even when an ML system is no more, or less,
prone to error than a human performing the same
task, relying on the machine can feel riskier because
it raises new concerns. When errors are made, where
do we assign culpability? What level of ongoing com-
mitment do the ML system designers have for adjust-
ments, upgrades, and maintenance? These concerns
are especially acute for fields such as medicine, space-
craft, finance, and real-time systems, or exactly those
settings in which a large impact is possible. An in-
creased sphere of impact naturally also increases the
associated risk, and we must address those concerns
(through technology, education, and support) if we
hope to infuse ML into real systems.
Complexity. Despite the proliferation of ML tool-
boxes and libraries, the field has not yet matured to
a point where researchers from other areas can simply
apply ML to the problem of their choice (as they might
do with methods from physics, math, mechanical en-
gineering, etc.). Attempts to do so often fail due to
lack of knowledge about how to phrase the problem,
what features to use, how to search over parameters,
etc. (i.e., the top row of Figure 1). For this reason, it
has been said that ML solutions come “packaged in a
Ph.D.”; that is, it requires the sophistication of a grad-
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uate student or beyond to successfully deploy ML to
solve real problems—and that same Ph.D. is needed to
maintain and update the system after its deployment.
It is evident that this strategy does not scale to the
goal of widespread ML impact. Simplifying, matur-
ing, and robustifying ML algorithms and tools, while
itself an abstract activity, can help erode this obstacle
and permit wider, independent uses of ML.

6. Conclusions

Machine learning offers a cornucopia of useful ways to
approach problems that otherwise defy manual solu-
tion. However, much current ML research suffers from
a growing detachment from those real problems. Many
investigators withdraw into their private studies with
a copy of the data set and work in isolation to perfect
algorithmic performance. Publishing results to the ML
community is the end of the process. Successes usually
are not communicated back to the original problem
setting, or not in a form that can be used.

Yet these opportunities for real impact are widespread.
The worlds of law, finance, politics, medicine, edu-
cation, and more stand to benefit from systems that
can analyze, adapt, and take (or at least recommend)
action. This paper identifies six examples of Impact
Challenges and several real obstacles in the hope of
inspiring a lively discussion of how ML can best make
a difference. Aiming for real impact does not just
increase our job satisfaction (though it may well do
that); it is the only way to get the rest of the world to
notice, recognize, value, and adopt ML solutions.
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