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Abstract
We develop the distance dependent Chinese
restaurant process (CRP), a flexible class of dis-
tributions over partitions that allows for non-
exchangeability. This class can be used to model
dependencies between data in infinite clustering
models, including dependencies across time or
space. We examine the properties of the dis-
tance dependent CRP, discuss its connections to
Bayesian nonparametric mixture models, and de-
rive a Gibbs sampler for both observed and mix-
ture settings. We study its performance with time-
dependent models and three text corpora. We
show that relaxing the assumption of exchange-
ability with distance dependent CRPs can provide
a better fit to sequential data. We also show its al-
ternative formulation of the traditional CRP leads
to a faster-mixing Gibbs sampling algorithm than
the one based on the original formulation.

1. Introduction
Dirichlet process (DP) mixture models provide a valuable
suite of flexible clustering algorithms for high dimensional
data analysis. DP mixtures can be described via the Chi-
nese restaurant process (CRP), a distribution over partitions
that embodies the assumed prior distribution over cluster
structures (Pitman, 2002). The CRP considers a sequence
of customers sitting down at tables in a restaurant. Each
customer sits at a previously occupied table with probabil-
ity proportional to the number of customers already sitting
there, and at a new table with probability proportional to
a concentration parameter. In a CRP mixture, customers
are data points, and data sitting at the same table belong to
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the same cluster. Since the number of occupied tables is
random, the resulting posterior distribution of seating as-
signments provides a distribution of clusterings where the
number of clusters is determined by the data.

The customers of a CRP are exchangeable—under any per-
mutation of their ordering, the probability of a particular
configuration is the same. While exchangeability is a reason-
able assumption in some clustering applications, in many
it is not. Consider data ordered in time, such as a time-
stamped collection of news articles. Each article will tend to
cluster with other articles that are nearby in time. Consider
spatial data, such as pixels in an image or measurements
at geographic locations. Here again, each data will tend
to cluster with other data that are nearby in space. The
traditional CRP mixture cannot model data like this.

We develop the distance dependent Chinese restaurant pro-
cess, a new CRP in which the random seating assignment
of the customers depends on the distances between them.
These distances can be based on time, space, or other char-
acteristics. Distance dependent CRPs can recover a number
of existing dependent distributions (Ahmed & Xing, 2008;
Zhu et al., 2005). They can also be arranged to recover the
traditional CRP distribution. The distance dependent CRP
expands the palette of infinite clustering models to model
inter-data dependence in many ways.

The distance dependent CRP represents the partition with
customer assignments, rather than table assignments. While
the traditional CRP randomly assigns customers to tables,
the distance dependent CRP assigns customers to other cus-
tomers. The random partition of the data, i.e., the table
assignments, arises from these customer connections. When
used in a Bayesian model, the posterior provides a new tool
for flexible clustering of non-exchangeable data.

In Section 2 we develop the distance dependent CRP and
discuss its properties. We use it in models of discrete data,
both fully-observed and as part of a mixture model. In Sec-
tion 3 we derive approximate posterior inference algorithms
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Figure 1. An illustration of the distance dependent CRP. The pro-
cess operates at the level of customer assignments, where each
customer chooses either another customer or no customer accord-
ing to Eq. (2). Customers that did not choose to connect to another
are indicated with a double box; customers that are linked to others
are indicated by an arrow. The table assignments, familiar for the
CRP, are derived from the customer assignments.

using Gibbs sampling. Finally, in Section 4 we describe
an empirical study of three text corpora using the distance
dependent CRP with time dependence, and we show that
models based on the distance dependent CRP can provide a
better fit to sequential data. We also show that its alternative
formulation of the traditional CRP leads to a faster-mixing
Gibbs sampler than the best one based on the original for-
mulation. The distance dependent CRP provides a new CRP
representation and efficient posterior inference algorithms
for both non-exchangeable and exchangeable data.

2. Distance dependent CRPs
The Chinese restaurant process (CRP) induces a probability
distribution on partitions. Consider a restaurant with an
infinite number of tables, and a sequential process by which
customers enter the restaurant and each sit down at a ran-
domly chosen table. AfterN customers have sat down, their
configuration at the tables represents a random partition.
Customers sitting at the same table are in the same group of
the partition.

In the traditional CRP, the probability of a customer sitting
at a table is proportional to the number of other customers
already sitting at that table (Pitman, 2002). Let zi be the in-
dex of the ith customer’s chosen table, the table assignment.
Assume that the customers z1:(i−1) occupy K tables, and
let nk be the number of customers sitting at table k. The
traditional CRP draws each zi sequentially,

p(zi = k | z1:(i−1), α) ∝
{
nk for k ≤ K
α for k = K + 1. (1)

When all N customers have been seated, their table as-
signments provide a random partition. Though described
sequentially, the CRP is exchangeable. The probability of a
particular partition of N customers is invariant to the order
in which they sat down.

We now develop the distance dependent CRP, a CRP where
the customers’ table assignments can depend on external

distances between them. While the random seating plan of
the traditional CRP arises from customers sitting directly
at tables, the seating plan of the distance dependent CRP
arises from customers sitting with other customers.

Let the customer assignment ci be the index of the cus-
tomer to which the ith customer connects. (For example, in
Figure 1 c4 = 5 and c5 = 2, and c3 = 1.) Let dij be the dis-
tance measurement between customers i and j, let D be the
set of all distance measurements between customers, and let
f be a decay function (described in more detail below). The
distance dependent CRP draws the customer assignments
independently, conditioned on the distance measurements,

p(ci = j |D,α) ∝
{
f(dij) if i 6= j
α if i = j.

(2)

A set of customer assignments maps to a partition, and thus
the distance dependent CRP is also a distribution over par-
titions. The partition is described with table assignments
z1:N , where two customers are sitting at the same table if
they are reachable from each other by a sequence of interim
customer assignments. The mapping between representa-
tions is denoted R(c1:N ) = z1:N . This relationship is not
one-to-one. Two sets of customer assignments can lead to
the same table assignment. Figure 1 illustrates the relation-
ship between customer assignments and table assignments.

We highlight two properties of the distance dependent CRP.
First, customer assignments do not depend on other cus-
tomer assignments, only the distances between customers.
The generative process of the traditional CRP, while lead-
ing to an exchangeable joint distribution, requires that each
successive customer is sampled conditional on the previous
customers. Second, j ranges over the entire set of customers,
and so any customer may sit with any other. Customer as-
signments can contain cycles (e.g., customer 1 sits with 2
and customer 2 sits with 1) and this still produces a partition.

The distances and decay function let us define a variety
of distributions.1 For example, if each customer is time-
stamped, then distance dij might be the time difference
between customers i and j and the decay function can en-
courage customers to sit with those that are contemporane-
ous. If each customer is associated with a location in space,
then distance dij might be the Euclidean distance between
them and the decay function can encourage customers to sit
with those that are in proximity. For many sets of distance
measurements, the resulting distribution over partitions is no
longer exchangeable. Distance dependent CRPs are appro-
priate when exchangeability is not a reasonable assumption.

1These model properties can be combined—consider d′
ij =

f(dij)—but it makes conceptual sense to separate them. The
distances are thought of as innate properties of the customers,
while the decay function is a modeling choice that mediates how
distances affect the resulting distribution over partitions.
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Figure 2. Draws from sequential CRPs. Illustrated are draws for different decay functions, which are inset: (1) The traditional CRP; (2)
The window decay function; (3) The exponential decay function; (4) The logistic decay function. The table assignments are illustrated,
derived from the customer assignments drawn from the distance dependent CRP. Each customer is represented by a point at the assigned
table. The decay functions are functions of the difference in index between the current customer and each previous customer.

We consider several types of decay. The window decay
f(d) = 1[d < a] only considers customers that are at most
distance a from the current customer. The exponential decay
f(d) = e−d/a decays the probability of each customer
exponentially with its distance to the linking customer. The
logistic decay f(d) = exp(−d+ a)/(1 + exp(−d+ a)) is
a smooth version of the window decay.

Sequential CRPs. In this paper, we focus our empirical
study on the sequential CRP, where customers link to them-
selves or previous customers. Sequential CRPs are con-
structed with the distances and decay function. The dis-
tances satisfy dij = ∞ for j > i, and the decay function
satisfies f(∞) = 0. This guarantees that no customer links
to a later customer, i.e., p(ci ≤ i |D) = 1. Several previous
models can be derived with a sequential CRP. We obtain
the model of Ahmed & Xing (2008) by multiplying the
window decay function and exponential decay function. We
obtain the model of Zhu et al. (2005) with a logistic decay
function.

Figure 2 illustrates seating draws from sequential CRPs with
each of the decay functions described above. These plots
are at the table level. Rather than plot the links between
customers, we plot the table at which each customer is
sitting. Compared to the traditional CRP (also illustrated),
customers tend to sit at the same table with other nearby
customers. We emphasize that sequential CRPs are only one
type of distance dependent CRP. Other distances, combined
with Eq. (2), lead to a variety of other non-exchangeable
distributions over partitions.

The traditional CRP is a sequential CRP. We can express
the traditional CRP as a sequential CRP. We recover the
traditional CRP when f(d) = 1 for d 6= ∞ and dij = ∞
for i > j. To see this, consider the marginal distribution of
a customer sitting at a particular table, given the previous
customers’ assignments. The probability of being assigned

to each of the other customers at that table is proportional to
one. Thus, the probability of sitting at that table is propor-
tional to the number of customers already sitting there. The
probability of not being assigned to a previous customer is
proportional to the scaling parameter α. This is precisely
the traditional CRP distribution of Eq. (1).

Though these models provide the same distribution of par-
titions, the corresponding Gibbs samplers (for a mixture
model based on the CRP) are different. In Section 4 we
show that the Gibbs sampler for the dd-CRP construction,
which operates at the customer level, is more efficient than
the traditional Gibbs sampler, which operates at the table
level (Neal, 2000).

2.1. Modeling data with a distance dependent CRP

We described the distance dependent CRP, a prior over par-
titions. We now describe two applications to Bayesian mod-
eling of discrete data, one in a fully observed model and the
other in a mixture model. These examples illustrate how to
use the posterior distribution of the partitions, given data and
an assumed generating process. We focus on discrete data
and we use the terminology of document collections.2 Ob-
servations are collections of words from a fixed vocabulary,
organized into documents.

Language modeling. Each document is drawn from a dis-
tance dependent CRP for which the tables are embellished
with IID draws from a base distribution over terms. (The
documents share the same base distribution.) The generative
process of a document is as follows. First, for each table
draw a term from the base distribution. Second, place the
data at tables via random customer assignments. Finally,

2CRP-based methods have been extensively applied to text
modeling and natural language processing (Teh et al., 2007; John-
son et al., 2007). However, these models apply to any discrete data,
such as genetic data and, with modification, to non-discrete data.
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assign each data point to the term associated with its table.
Subsets of the data exhibit a partition structure by sharing
the same table. Note that multiple instances of the same
term can be associated with different tables, each having
drawn the same term from the base distribution. Instances
of different terms are necessarily from different tables.

When using a traditional CRP, this is a simple Dirichlet-
smoothed language model, with the Dirichlet random vari-
able marginalized out. Such a model is effective because
it captures the “contagious” nature of language—once a
word is seen once, it is more likely to be seen again. When
we use a sequential CRP, we are assuming that a word is
more likely to occur near itself in a document. Words are
still considered contagious, but the window of contagion is
mediated by the decay function.

We define the model more formally. Recall R(c1:N )
maps customer assignments to table assignments. Define
R∗(c1:N ) to contain one customer index from each table.
For example, in the sequential CRP, R∗(c1:N ) can be the
first customers to sit at each table, i.e., those customers who
link to themselves. (This set is important to incorporate the
notion of a base distribution into CRP-based models.) Given
a decay function f , distances D, scaling parameter α, and
base distribution G0, N words are drawn:

1. For i ∈ [1, N ], draw ci ∼ dist-CRP(α, f,D).
2. For i ∈ [1, N ], if ci 6∈ R∗(c1:N ) then assign the word
wi = wci

. Otherwise, draw wi ∼ G0.

For each document, we observe a sequence of words w1:N

from which we can infer their seating assignments in the
distance dependent CRP. (See Section 3 for algorithms for
posterior inference.)

Mixture modeling. Bayesian nonparametric methods have
been extensively applied to mixture modeling problems,
where the inferential goal is to probabilistically divide the
data into groups. DP mixtures provide a solution where the
number of groups is unbounded. In the Chinese restaurant
analogy, the number of tables that the customers (i.e., the
data) occupy is unknown in advance. The posterior provides
both a grouping and the number of groups.

The second application we study is akin to the CRP mixture
or (equivalently) the Dirichlet process (DP) mixture, but
differs in that the mixture component for an observation
depends on the mixture component for nearby observations.
Again, we endow each table with a draw from a base dis-
tribution G0, but here G0 is a distribution over component
parameters and the unit of observation is a document. When
analyzing documents with a CRP mixture, the base distribu-
tion is typically a Dirichlet (Teh et al., 2007).

Given a decay function f , distances D, scaling parameter α,
and an exchangeable Dirichlet distribution with parameter

λ, N M -word documents are drawn as follows,

1. For i ∈ [1, N ], draw ci ∼ dist-CRP(α, f,D).
2. For i ∈ [1, N ],

(a) If ci 6∈ R∗(c1:N ) then set the parameter for the ith
customer to θi = θci

. Otherwise draw the param-
eter from the base distribution, θi ∼ Dirichlet(λ).

(b) Draw the ith document, wi ∼ Mult(M, θi).

In Section 4, we will study the sequential CRP in this setting,
choosing its structure so that contemporaneous documents
are more likely to be clustered together. The distances dij
can be the differences between indices in the ordering of
the data, or lags between external measurements of distance
like date or time.

Relationship to dependent DPs The distance dependent
CRP mixture is an alternative to the dependent Dirichlet
process (DDP) mixture, which is also an infinite clustering
model that accounts for dependencies between the latent
component assignments of the data (MacEachern, 1999).
DDP mixtures posit collections of dependent random mea-
sures that generate the data. The DDP has been extended to
sequential, spatial, and other types of dependence (Griffin
& Steel, 2006; Duan et al., 2007; Xue et al., 2007).

DDP mixtures and distance dependent CRP mixtures are
qualitatively different classes of models. DDP mixtures
are Bayesian nonparametric models, based on random mea-
sures, while the distance dependent CRP mixtures generally
are not.3 In a DDP, close data are drawn from a similar
distribution over clusters; in the distance dependent CRP,
close data are likely to to arise from the same cluster.

Notably, DDP mixtures exhibit marginal invariance; dis-
tance dependent CRPs do not. This means that marginaliz-
ing over a particular customer in a DDP mixture gives the
same probability distribution as if that customer were not in-
cluded in the model. The distance dependent CRP does not
generally have this property, allowing it to capture the way
in which influence might be transmitted from one point to
another, such as in a model of disease spread. (We note that
many machine learning models, such as conditional random
fields or Ising models, do not exhibit marginal invariance.)
Thus, in the way they capture dependence, these classes of
models make different assumptions. The appropriate choice
of model depends on the modeling task at hand.4

3 We have avoided calling the distance dependent CRP a
“Bayesian nonparametric” model because it does not necessar-
ily originate from a prior over the infinite space of probability
measures, as the CRP originates from the DP. That said, both the
CRP and the distance dependent CRP share a characteristic ability
to let the data determine their number of clusters.

4In a longer paper we show that DDP mixtures and distance
dependent CRP mixtures are nearly distinct (Blei & Frazier, 2009).
The only distance dependent CRP mixture that is equivalent to
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DDP mixtures and distance dependent CRP mixtures have
a practical difference as well. In posterior inference, statis-
ticians using DDPs must appeal to truncations of the stick-
breaking representation of the random measures as the de-
pendency between data precludes more efficient techniques
that integrate out the component parameters and propor-
tions. In contrast, distance dependent CRP mixtures are
amenable to Gibbs sampling algorithms that integrate out
these variables.

3. Posterior inference and prediction
In both applications described above, our goal is to compute
the posterior distribution over partitions. As with mod-
els based on the traditional CRP, computing this posterior
exactly is intractable. We approximate it using Gibbs sam-
pling (Robert & Casella, 2004). We construct a Markov
chain for which the stationary distribution is the posterior,
run the chain to collect independent samples, and then use
those samples to approximate the true posterior.

In both applications, the state of the chain is a set of cus-
tomer assignments c1:N . These assign each observation xi
to a customer j, where j is either the index of another cus-
tomer or is equal to i. (We generically call observations xi,
corresponding to words in the language modeling applica-
tion and documents in the mixture modeling application.)

The Gibbs sampler iteratively draws from the conditional
distribution of each assignment given the other assignments
and the observations. Let c−i be the seating assignment
with the outgoing link of customer i removed (i.e., the other
assignments for sampling the ith assignment). Other cus-
tomers still can link to i, and note that i is in its own table
if no other customer links to it. For example in Figure 1, if
i = 5 then c−i defines 5 tables, where the table {2, 4, 5, 8}
under c1:N is split into the tables {2} and {4, 5, 8}. The
conditional distribution of ci given the other assignments
c−i, the observed data x1:N , and the base measure G0 is,

p(ci | c−i, x1:N , G0) ∝ p(ci)p(x1:N | ci, c−i, G0). (3)

The first term is the distance dependent CRP prior of Eq. (2).
The second term is the likelihood of the data under the
partition induced by {c−i, ci}.

3.1. Language modeling

We first consider the language modeling application, i.e.,
when we directly observe observations from G0. Obser-
vations are a sequence of N words w1:N and recall that
R∗(c1:N ) contains one customer index from each table
(e.g., in Figure 1, we could take R∗(c1:N ) = {1, 2, 6, 10}).

a DDP mixture is the traditional CRP embellished with a base
measure, i.e., the Dirichlet process mixture.

Eq. (3) becomes

p(ci | c−i, w1:N , G0) ∝
p(ci)1[wi = wci

]
∏
j∈R∗(c1:N ) p(wj | G0). (4)

The product term is p(w1:N | ci, c−i), which is the probabil-
ity of independently drawing each table’s unique word from
G0. This term can be further decomposed into two terms,
one that depends on the conditioned variable ci and one that
does not,∏

j∈R∗(c1:N )p(wj | G0)

= h(ci, G0)
∏
j∈R∗(c−i)

p(wj | G0).

The quantity h(ci, G0) is defined below. Since the product
over R∗(c−i) does not depend on ci, Bayes rule provides
p(ci | c−i, w1:N , G0) ∝ p(ci)1[wi = wci

]h(ci, G0).

To compute h(ci, G0) consider the change from R(c−i) to
R(c1:N ). That is, how does the link ci change the seating
assignment? There are two cases: (1) The tables remain
the same, i.e., R(c−i) = R(c1:N ); this occurs if customer
i links to a customer that is already seated at his table. (2)
Two tables are joined; this occurs if customer i links to a
customer at another table. In the first case, h(ci, G0) = 1.
In the second h(ci, G0) = 1/p(wi |G0), since wi starts two
tables under under c−i but only one under c1:N .

Finally, to sample from Eq. (4), we consider the two cases
above with the two cases for p(ci) from Eq. (2), i.e., ci = i
and ci 6= i. (The four resulting cases reduce to three because
when ci = i, R(c−i) = R(c1:N ).)

Note that we derived the Gibbs sampler for the general dis-
tance based CRP, as opposed to the sequential CRP. This
sampler could be used, for example, to cluster image code-
words in a spatial setting, or to cluster members of a social
network. Moreover, this sampler does not hinge on discrete
data; it is easily adapted to continuous data or count data.

Sampling the base distribution. We further consider a
hierarchical model where G0 is drawn from a prior, G0 ∼
H(λ). The term p(wi |G0) is replaced with the integral

p(wi | ci, c−i, w−i, λ) =∫
p(wi |G0)p(G0 | {wk : k ∈ R∗(c1:N )}, λ)dG0.

In the equation, the conditional distribution of G0 only de-
pends on those data in R∗(c1:N ) because each table con-
tains exactly one draw from G0. When H and G0 form a
conjugate pair, this integral is a straightforward Bayesian
computation (Bernardo & Smith, 1994).

3.2. Mixture modeling

In mixture modeling, observations are a sequence of docu-
ments ~w1:N . Each document is assigned to a customer, and
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the Gibbs sampler iteratively draws from the conditional
distribution of each customer assignment in Eq. (3).

To compute the likelihood term, we introduce more notation.
If r ∈ R∗(c1:N ), let Sr be the set of customer indices that
are at the same table as r. For example, S2 in Figure 1 is
{2,4,5,8}. With this notation, the likelihood term is

p(~w1:N | c−i, ci = j, λ) =
∏
r∈R∗(c1:N ) p(~wSr

|λ). (5)

When G0 is conjugate to the data likelihood, e.g.,
Dirichlet(λ) in the case of multinomial data, each term is a
ratio of normalizing constants (Bernardo & Smith, 1994).

Finally, note that for sequential D and specific decay func-
tions, this provides an alternative approximate inference
method for the models of Ahmed & Xing (2008) and Zhu
et al. (2005). Moreover, since the traditional CRP can be
expressed as a sequential CRP, this is a new Gibbs sampler
for CRP mixture models. We compare this sampler to the
traditional collapsed Gibbs sampler in Section 4.

Prediction. In Section 4, we estimate the log likelihood
of held-out documents given a set of observed documents.
This is a measure of the predictive power of the model. We
approximate this quantity from Gibbs samples.

Assume that D is sequential. Let ~w be a held out document,
~w1:N be the previously observed documents, and c(b)1:N be the
bth sample from a Gibbs run of B samples. The predictive
likelihood is

p(~w | ~w1:N , D, α) ≈ (1/B)
∑B
b=1 p(~w | c

(b)
1:N , ~w1:N ),

where each term is

p(~w | c(b)1:N , ~w1:N ) =
∑N+1
c=1 p(c |D,α)p(~w | c, c(b)1:N , ~w1:N ).

The first term is the prior probability of the new customer
assignment given in Eq. (2). (The new customer sits alone
when c = N + 1.) The conditional probability of the new
document in the second term is a ratio of probabilities: The
numerator is the marginal probability of the new document
and the previous documents assigned to the partition of c;
the denominator is the marginal probability of the previous
documents assigned to the partition of c.

WhenD is not sequential, the predictive distribution is more
complicated—it must be estimated as a ratio of likelihoods.
This is possible, though potentially computationally inten-
sive, by running two Gibbs samplers: one that includes the
missing observation as a hidden variable, and one that does
not. Other methods of estimating ratios of likelihoods might
also be available (Meng & Gelman, 1998).

4. Empirical study
We studied the distance dependent CRP in the language
modeling and mixture settings on three text data sets. We
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Figure 3. Bayes factors of the decayed CRP versus the traditional
CRP on documents from Science and the New York Times. The
black line at zero indicates an equal fit between the traditional
CRP and decayed CRP. Also illustrated are standard errors across
documents. In the logistic decay function, the slope parameter is
fixed at 50. Values for the exponential decay at parameters less
than 50 have large negative Bayes factors and are not illustrated.
The shapes of the curves are similar for the two corpora; both are
written in the same language.

focus on time dependence, where the sequential ordering
of the data is respected via the decay function and distance
measurements (see Section 2). We explored a number of
different parameterizations of the decay function. As we
show below, the distance dependent CRP gives better fits to
text data in both modeling settings.

Further, we compared the traditional Gibbs sampler for DP
mixtures to the Gibbs sampler for the distance dependent
CRP formulation of DP mixtures. The sampler presented
here mixes faster than the traditional sampler.

Language modeling The fully-observed decayed CRP
models were evaluated on two data sets: a collection of
100 OCR’ed documents from the journal Science and a col-
lection of 100 world news articles from the New York Times.
We assess sampler convergence visually, examining the au-
tocorrelation plots of the log likelihood of the state of the
chain (Robert & Casella, 2004).

We compare models by estimating the Bayes factor, the ratio
of the document’s probability under the decayed CRP to
its probability under the traditional CRP (Kass & Raftery,
1995). For a decay function f , we estimate

BFf,α = p(w1:N | dist-CRPf,α)/p(w1:N |CRPα) (6)

A value greater than one indicates an improvement of the
distance dependent CRP over the traditional CRP. We use
the method of Geyer & Thompson (1992) to estimate this
ratio from posterior samples.

Figure 3 illustrates the average Bayes factors across docu-
ments for various decay functions, where the distance be-
tween words is the number of words between them. The
logistic decay function always provides a better model than



Distance dependent Chinese restaurant processes

NIPS

Decay parameter

H
e

ld
!

o
u

t 
lik

e
lih

o
o

d

!1847500

!1847000

!1846500

!1846000

!1845500

!1845000

!1844500

!1844000

1 2 3 4 5

Decay type

! CRP

exponential

logistic

NYT

Decay parameter

H
e

ld
!

o
u

t 
lik

e
lih

o
o

d

!347700

!347600

!347500

!347400

2 4 6 8 10 12 14

Decay type

! CRP

exponential

logistic

NYT

Decay parameter

H
e

ld
!

o
u

t 
lik

e
lih

o
o

d

!347700

!347600

!347500

!347400

2 4 6 8 10 12 14

Decay type

! CRP

exponential

logistic

Figure 4. Predictive held-out log likelihood for the last year of
NIPS and last three days of the New York Times corpus. Error bars
denote standard errors across MCMC samples. On the NIPS data,
the distance dependent CRP outperforms the traditional CRP for
the logistic decay with a 2 day parameter. On the New York Times
data, the distance dependent CRP outperforms the traditional CRP
in almost all settings tested.

the traditional CRP; the exponential decay function provides
a better model at certain settings of its parameter. The hi-
erarchical setting is pictured, with a Dirichlet prior on the
unobserved G0; the shapes of the curves are similar in the
non-hierarchical settings.

Mixture modeling We examined the distance dependent
CRP mixture on two text corpora. We analyzed one month
of the New York Times (NYT) time-stamped by day, contain-
ing 2,777 articles, 3,842 unique terms and 530K observed
words. We also analyzed 12 years of NIPS papers time-
stamped by year, containing 1,740 papers, 5,146 unique
terms, and 1.6M observed words. Distances D were differ-
ences between time-stamps.

In both corpora we use the last 250 articles as held out data.
In the NYT data, this is three days of news; in the NIPS data,
these are papers from the 11th and 12th year. (We retain the
time stamps of the held-out data.) We evaluate the models
by estimating the predictive likelihood of the held out data.
The results are in Figure 4. On the NYT corpus, the distance
dependent CRPs definitively outperform the traditional CRP.
A logistic decay with a window of 14 days performs best.
On the NIPS corpus, the logistic decay function with a decay
parameter of 2 years outperforms the traditional CRP. In
general, these results show that non-exchangeable models
given by the distance dependent CRP mixture provide a
better fit than the exchangeable CRP mixture.

Comparison to the traditional Gibbs sampler The dis-
tance dependent CRP can express a number of flexible mod-
els. However, as we describe in Section 2, it can also re-
express the traditional CRP. In the mixture model setting,
the Gibbs sampler of Section 3.2 thus provides an alterna-
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Figure 5. The log probability of MAP estimates from the table
based Gibbs sampler (Neal, 2000) compared to the customer based
Gibbs sampler, i.e., the sampler from Section 3 with the CRP. The
data are 500 articles from the New York Times. Each point is a
run of the sampler, started from the same place (each customer at
a unique table), but with different permutations of the data. The
customer-based sampler finds better MAP estimates in 19/26 runs,
The sampler of Section 3 for CRP mixtures mixes faster than the
traditional sampler.

tive algorithm for approximate posterior inference in DP
mixtures. We compare this Gibbs sampler to the widely
used collapsed Gibbs sampler for DP mixtures, i.e., Algo-
rithm 3 from Neal (2000), which is applicable when the
base measure G0 is conjugate to the data likelihood.

The Gibbs sampler for the distance dependent CRP iter-
atively samples the customer assignment of a data point;
the collapsed Gibbs sampler iteratively samples the clus-
ter assignment of each data point. The practical difference
between the two algorithms is that the distance dependent
CRP based sampler can change several customers’ cluster
assignment via a single customer assignment. This allows
for larger moves in the state space of the posterior and, we
will see below, faster mixing of the sampler.

Moreover, the computational complexity of the two sam-
plers is the same. Both require computing the change in
likelihood of adding or removing either a set of points (in
the distance dependent CRP case) or a single point (in the
traditional CRP case) to each cluster. Whether adding or
removing one or a set of points, this amounts to computing
a ratio of normalizing constants for each cluster. This is
where the bulk of the computation of each sampler lies.

To compare the samplers, we analyzed documents from the
New York Times collection under a CRP mixture with scaling
parameter equal to one and uniform Dirichlet base measure.
Figure 5 illustrates the log probability of the MAP estimate
of the partition structure under the CRP for each sampler.
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Each point represents a permutation of the data and 1000
Gibbs iterations. (Even though the CRP is exchangeable,
both Gibbs samplers are sensitive to the initial permutation
of the data.) The data were started from the state where each
customer is at a unique table. Out of 25 random permuta-
tions, the distance dependent CRP algorithm (representing
the traditional CRP with a customer assignment represen-
tation) finds a more likely partition under the CRP than the
table assignment sampler. This indicates that Gibbs sam-
pler under the customer assignment representation is mixing
faster than the traditional alternative.

5. Discussion
We developed the distance dependent Chinese restaurant
process, a distribution over partitions that accommodates a
flexible and non-exchangeable seating assignment distribu-
tion. The distance dependent CRP hinges on the customer
assignment representation. We derived a general-purpose
Gibbs sampler based on this representation, and examined
sequential models of text.

The distance dependent CRP opens the door to a number of
further developments in infinite clustering models. We plan
to explore spatial dependence in models of natural images,
and multi-level models akin to the hierarchical Dirichlet
process (Teh et al., 2007). Moreover, the simplicity and
fixed dimensionality of the corresponding Gibbs sampler
suggests that a variational method is worth exploring as an
alternative deterministic form of approximate inference.
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