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Abstract

The structure of a Markov network is typi-
cally learned using top-down search. At each
step, the search specializes a feature by con-
joining it to the variable or feature that most
improves the score. This is inefficient, test-
ing many feature variations with no support
in the data, and highly prone to local optima.
We propose bottom-up search as an alterna-
tive, inspired by the analogous approach in
the field of rule induction. Our BLM algo-
rithm starts with each complete training ex-
ample as a long feature, and repeatedly gen-
eralizes a feature to match its k nearest ex-
amples by dropping variables. An extensive
empirical evaluation demonstrates that BLM
is both faster and more accurate than the
standard top-down approach, and also out-
performs other state-of-the-art methods.

1. Introduction

Markov networks are a powerful representation for
joint distributions, but learning them from data is
extremely difficult. When learning structure, scor-
ing each candidate requires first learning the optimal
weights for it. Weight learning cannot be done in
closed form, and requires inference as a subroutine. In
turn, inference is intractable. As a result, despite its
promise, Markov network structure learning has not
been widely used to date.

Roughly speaking, the goal of Markov network struc-
ture learning is to discover regions of high probabil-
ity in instance space, form features to represent them,
and learn the corresponding weights. The standard
approach to learning the structure of a Markov net-
work is the algorithm of Della Pietra et al. (1997),

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

which induces a set of features. It performs a top-
down, or general-to-specific, search. At each step, the
search specializes a feature by conjoining it to the vari-
able or feature that most improves the score. Several
other algorithms exist that perform top-down heuristic
search through the space of candidate structures (Mc-
Callum, 2003; Kok & Domingos, 2005). General-to-
specific search is inefficient as it tests many feature
variations with no support in the data, and is highly
prone to local optima.

In recent years, a number of alternative approaches
have been developed. One approach is to couple pa-
rameter learning and feature induction into one step
through L1 regularization, which forces most weights
to be zero (Lee et al., 2007; Höfling & Tibshirani, 2009;
Ravikumar et al., 2010). By providing the optimiza-
tion procedure with a large initial feature set (i.e., all
possible features of interest), model selection occurs by
picking the features with non-zero weights after learn-
ing. However, due to tractability concerns, these ap-
proaches only construct pairwise networks (Höfling &
Tibshirani, 2009; Ravikumar et al., 2010). In principle,
Lee et al.’s (2007) algorithm can learn arbitrarily long
features. However, in practice it has only been evalu-
ated for inducing features of length two (i.e., learning a
pairwise network). Another class of algorithms learns
only models of small tree width, which ensures that
inference remains tractable (Narasimhan & Bilmes,
2004; Chechetka & Guestrin, 2007). However, small
tree width is a very restrictive assumption, and the
applicability of this approach is limited.

The problem of feature induction for Markov networks
is similar to the problem of rule induction for classifi-
cation. Rule induction constructs a rule set to discrim-
inate between different categories. Each rule consists
of a body and a head. The body is a conjunction of
antecedents, where each antecedent tests a single vari-
able. A rule covers (or matches) an example if all an-
tecedents of the rule are true of the example. An alter-
native paradigm, known as bottom-up or specific-to-
general learning (Domingos, 1996; Muggleton & Feng,
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1990), exists in rule induction, which addresses the
shortcomings of top-down search. Specific-to-general
induction starts with a rule body that contains many
antecedents. It then generalizes the rule by removing
antecedents from its body, which expands the number
of examples the rule matches. To our knowledge, the
only approach for learning Markov (logic) networks
to date that uses bottom-up ideas is Mihalkova and
Mooney’s BUSL algorithm (2007). However, it only
uses them in a pre-processing step to reduce the num-
ber of candidate features; the main feature induction
process is still top-down.

We propose bottom-up search as an alternative
method for learning the structure of a Markov net-
work. Our algorithm, called BLM (Bottom-up
Learning of Markov Networks), is inspired by the RISE
algorithm for rule induction (Domingos, 1996). BLM
starts by treating each complete example as a long fea-
ture in the Markov network. The algorithm repeatedly
iterates through the feature set. It considers general-
izing each feature to match its k nearest previously
unmatched examples by dropping variables. If incor-
porating the newly generalized feature improves the
model’s score, it is retained in the model. The process
terminates when no generalization improves the score,
which indicates that a local optima has been reached.
We perform an extensive empirical evaluation on 21
data sets, and find that BLM is both faster and sig-
nificantly more accurate than the standard top-down
approach (Della Pietra et al., 1997), while also outper-
forming other state-of-the-art methods.

2. Markov Networks

2.1. Representation

A Markov network models the joint distribution of a
set of variables X = (X1, X2, . . . , Xn) (Della Pietra
et al., 1997). It is composed of an undirected graph
G and a set of potential functions φk. The graph has
a node for each variable, and the model has a poten-
tial function for each clique in the graph. The joint
distribution represented by a Markov network is

P (X=x) =
1
Z

∏
k

φk(x{k}) (1)

where, x{k} is the state of the kth clique (i.e., the
state of the variables that appear in that clique), and
Z is a normalization constant. Markov networks are
often represented as log-linear models, with each clique
potential replaced by an exponentiated weighted sum
of features of the state:

P (X=x) =
1
Z

exp

∑
j

wjfj(x)

 (2)

A feature fj(x) may be any real-valued function of
the state. For discrete data, a feature typically is a
conjunction of tests of the form Xi = xi, where Xi is a
variable and xi is a value of that attribute. A feature
matches an example if it is true of that example.

2.2. Inference

The main inference task in graphical models is to
compute the conditional probability of some variables
(the query) given the values of some others (the evi-
dence), by summing out the remaining variables. This
problem is #P-complete. Thus, approximate infer-
ence techniques are required. One widely used method
is Markov chain Monte Carlo (MCMC) (Gilks et al.,
1996), and in particular Gibbs sampling, which sam-
ples each variable in turn given its Markov blanket.

2.3. Weight Learning

Ideally, each candidate model would be scored by its
training set log-likelihood. Doing so requires comput-
ing the maximum likelihood estimate of the weight,
which is a computationally challenging task as it re-
quires performing inference over the model. The
derivative of the log-likelihood with respect to the jth
feature is:

∂

∂wj
logPw(X=x) = nj(x)− Ew[nj(x)] (3)

where nj(x) =
∑

i fj(xi), xi is the ith training ex-
ample and Ew[nj(x)] is computed using the current
weight vector. In other words, the jth component of
the gradient is simply the difference between the total
value of the jth feature in the data and its expectation
according to the current model. Weight learning re-
quires iterative optimization where each step performs
inference over the current model to compute the expec-
tations. Furthermore, efficient optimization methods
also require computing the log-likelihood itself, and
thus the partition function Z. Additionally, Kulesza
and Pereira (2007) have found that approximate infer-
ence can mislead weight learning algorithms.

A more efficient alternative, widely used in areas like
spatial statistics and social network modeling, is to
optimize the pseudo-likelihood (Besag, 1975):

logP •w(X=x) =∑V
j=1

∑N
i=1 logPw(Xi,j =xi,j |MBx(Xi,j)) (4)

where V is the number of variables, N is the number
of examples, xi,j is the value of the jth variable of the
ith example, MBx(Xi,j) is the state of Xi,j ’s Markov
blanket in the data.
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2.4. Structure Learning

Della Pietra et al.’s algorithm (1997) is the standard
approach to learning the structure of a Markov net-
work. The algorithm starts with a set of atomic fea-
tures (i.e., just the variables in the domain). It creates
candidate features in two ways. First, it considers con-
joining each feature currently in the model with every
other feature in the model. Second, it composes each
feature in the model with each atomic feature. It cal-
culates the weight for each candidate feature by assum-
ing that all other feature weights remain unchanged,
which is done for efficiency reasons. It uses Gibbs sam-
pling for inference when setting the weight. Then, it
estimates the benefit of including each candidate fea-
ture f in the model based on the KL-divergence which
captures the improvement in the log-likelihood that
would result by including the candidate feature. It
adds the feature that results in the largest gain to the
feature set. This procedure terminates when no can-
didate feature improves the model’s score.

A recent L1 regularization based approach to structure
learning is the method of Ravikumar et al. (2010). It
learns the structure by trying to discover the Markov
blanket of each attribute (i.e., its neighbors in the
network). It considers each attribute Xi in turn
and builds an L1 logistic regression model to predict
the value of Xi given the remaining attributes. The
Markov blanket of Xi is all attributes that have non-
zero weight in the logistic regression model. In the
limit of infinite data, consistency is guaranteed (i.e.,
Xi is in Xj ’s Markov blanket iff Xj is in Xi’s Markov
blanket). In practice, this is often not the case and
there are two methods to decide which edges to in-
clude in the network. One includes an edge if Xi is in
Xj ’s Markov blanket or Xj is in Xi’s Markov blanket.
The other includes an edge if Xi is in Xj ’s Markov
blanket and Xj is in Xi’s Markov blanket.

3. Rule Induction

The goal of binary classification is to distinguish a set
of positive examples from a set of negative examples.
Rule induction constructs a rule set to discriminate be-
tween the two categories. Each rule consists of a body
and a head. The body is a conjunction of antecedents,
where each antecedent tests a single variable. For dis-
crete data, each antecedent performs an equality test
Xi = xi, where Xi is a variable and xi is a value of that
variable. A rule covers (or matches) an example if all
antecedents of the rule are true of the example. Rule
induction algorithms typically employ a “divide and
conquer” approach to constructing the rule set. A rule
is induced on the full training set that covers as many

positive examples and as few negative ones as possi-
ble. The newly covered positive examples are removed
from the training set and the process repeats until all
positive examples are covered. Top-down, or general-
to-specific, induction is the most common strategy for
learning a single rule (Cohen, 1995). Each induced
rule begins as just a head (i.e., it matches all exam-
ples). The induction algorithm then adds antecedents
to its body so that it covers a smaller set of exam-
ples. The process stops when no specialization im-
proves the rule’s accuracy. Notice the similarity be-
tween this search strategy and the feature induction
approach presented in Subsection 2.4.

Top-down induction is inefficient, testing many fea-
ture variations with no support in the data, and
highly prone to local optima. Bottom-up, or specific-
to-general, rule learning addresses these shortcom-
ings (Domingos, 1996; Muggleton & Feng, 1990).
Specific-to-general induction starts with a rule body
that contains many antecedents. It then generalizes
the rule by removing antecedents from its body, which
expands the number of examples the rule matches.

RISE (Domingos, 1996) is one of the most successful
bottom-up rule induction algorithms, and it forms the
basis for our approach. RISE works as follows. First,
it converts each training example into a rule. It then
iterates through the rule set. For each rule, it finds
the nearest unmatched example of the same class. It
generalizes the rule to match the example by remov-
ing any antecedent that disagrees with the example. If
including the generalized rule in the rule set improves
its accuracy, then the new rule is retained. If the rule
set already contains an identical rule, it removes the
original rule. The algorithm terminates when no gen-
eralization improves the rule set’s accuracy.

RISE has parallels with both instance-based learning
and agglomerative clustering. If RISE accepts no gen-
eralizations, it retains the training set as the final clas-
sifier and reduces to the nearest-neighbor algorithm.
The relation between bottom-up and top-down rule
induction is similar to the relation between agglom-
erative and divisive clustering, and between forward
and backward feature selection for classification and
regression.

4. Bottom-Up Feature Induction

We now describe BLM (Bottom-up Learning of
Markov Networks), a bottom-up feature induction al-
gorithm for Markov networks inspired by RISE. BLM
performs a specific-to-general search by starting with
each complete training example as a long feature. It
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Algorithm 1 BLM(training set TS, set of integers K)
FS = TS
score = S(TS, FS)
repeat

for all Features F ∈ FS do
(newScore, FS′) =

Generalize Feature(TS, FS, F , K)
if newScore > score then

Replace FS with FS′

score = newScore
end if

end for
until No generalization improves score
return FS

repeatedly generalizes a feature to match its k near-
est examples by dropping variables. In this paper, we
only consider discrete variables, but the extension to
numeric ones is straightforward.

The four key elements of BLM, introduced in the next
subsections, are: (i) how to score candidate structures,
(ii) how to construct the initial feature set, (iii) how to
generalize a feature, and (iv) how the overall algorithm
functions.

4.1. Structure Scoring and Weight Learning

As mentioned in Subsection 2.3, several possibilities
exist for scoring candidate structures. BLM can use
any score function and weight optimization procedure.
In particular, we use a score function of the form

S(TS, FS, L, α) = L(TS, FS)− α
∑

fi∈FS

|fi| (5)

where TS is the training set, FS is the feature set,
L(TS, FS) can be the likelihood or pseudo-likelihood,
α is a penalty term to avoid overfitting, and |fi| is the
number of tests in feature fi.

4.2. Initial Feature Set

The initial feature set consists of one feature for each
example. The feature is a conjunction over all at-
tributes in the example (as in RISE). This is a good
initial feature set as it contains a set of maximally spe-
cific features such that each feature matches at least
one training example. All duplicate features are re-
moved from the model.

4.3. Feature Generalization

The key step, outlined in Algorithm 2, is generalizing
the features. When generalizing a feature f , BLM re-
trieves the k nearest examples to f that currently do

Algorithm 2 Generalize Feature(training examples
TS, feature set FS, feature F , K)
bestScore = −∞
FSbest = FS
for all k ∈ K do
F ′ = F
TSk = k nearest examples to F

that do not match F
for all Tests t in F ′ do

if t does not match all examples in TSk then
Remove t from F ′

end if
end for
if F ′ is identical to another feature in FS then
FS′ = FS without F

else
FS′ = FS with F replaced by F ′

end if
newScore = S(TS, FS′)
if newScore > bestScore then
bestScore = newScore
FSbest = FS′

end if
end for
FS′ = FS without F
newScore = S(TS, FS′)
if newScore > bestScore then
bestScore = newScore
FSbest = FS′

end if
return (FSbest, bestScore)

not match it. One possible way to measure the dis-
tance between an example and a feature is generalized
Hamming distance, which counts the number of vari-
ables that would need to be dropped in order for f
to match the example. In rule induction, a more so-
phisticated measure, called the value difference metric,
usually performs much better in practice (Domingos,
1996). The metric is designed for classification and the
intuition behind it is that two values are similar if they
make similar predictions about the class value. We
propose a generalized value difference metric D(f, e):

D(f, e) =
∑
c∈f

GVDM(f, e, c) (6)

where f is a feature, e is an example, c ranges over the
variables in f and

GVDM(f, e, c) =∑
h

∑
fi∈f,fi 6=c |P (c = h|fi)− P (c = h|efi

))|Q (7)

where h ranges over the values that variable c can take
on, fi is the value of the ith variable in f , efi is value
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of the attribute referenced by fi in e, and Q is an
integer. For a variable c that appears in f , GVDM
measures how well the other variables in f predict c.
The intuition is that if c appears in a feature then the
other variables should be good predictors of c.

In the generalization f ′, BLM drops any variable that
causes a mismatch with one of the k nearest exam-
ples. Thus f ′ matches all k examples in addition to
the examples that f previously matched.

4.4. The BLM Algorithm

BLM receives a set of training examples, TS, and a
set of integers, K, as input. It includes one feature,
called an atomic feature, for each variable, to capture
its marginal probability. This allows the other features
to focus on capturing interactions among the variables.
The atomic features remain unchanged throughout
learning. Then it creates one feature for each example.
Next, the algorithm repeatedly iterates through all
non-atomic features. For each feature f , BLM scores
several candidate generalizations. For each k ∈ K, it
creates one candidate by generalizing f to match its
k nearest unmatched examples. The generalization is
constructed by dropping the variables that cause the
mismatch. At each step, it also considers the general-
ization of removing f from the model. To score each
potential generalization f ′, BLM replaces f with f ′

in the model. If f ′ is identical to another feature in
the model, then f ′ is removed. BLM retains the best
scoring candidate model if it improves the score. The
process terminates when no generalization improves
the score, which indicates that a local optimum has
been reached. Algorithm 1 illustrates this process in
pseudo-code (ignoring atomic features for simplicity).

4.5. Time Complexity

The worst case time-complexity of BLM compares
favorably with Della Pietra et al.’s algorithm. For
Markov network structure learning, the time bottle-
neck is learning feature weights, so we will analyze the
number of calls to the weight learning subroutine. Let
n be the number of examples and v be the number of
variables in the domain.

Each for loop in BLM considers generalizing each fea-
ture, of which there are at most n. Each loop calls
weight learning O(ng) times, where is g is number of
k values tried at each generalization step. In the worst
case, a loop removes a single variable from a single
feature, and the whole algorithm removes all variables
from all features, requiring O(ngv) repetitions of the
repeat cycle. Thus the maximum number of calls to
weight learning is O(gvn2).

Table 1. Data Set Characteristics

Data Set Train Tune Test Num.
Set Set Set Feats.
Size Size Size

20 Newsgroups 11,293 3,764 3,764 930
Abalone 3,134 417 626 31
Adult 36,631 4,884 7,327 125
Audio 15,000 2,000 3,000 100
Book 8,700 1,159 1,739 500
Covertype 30,000 4,000 6,000 84
EachMovie 4,524 1,002 591 500
Facebook 9,206 1,765 1,780 698
Jester 9,000 1,000 4,116 100
KDDCup 2000 180,092 19,907 34,955 64
MSNBC 291,326 38,843 58,265 17
MSWeb 29,441 3,270 5,000 294
Netflix 15,000 2,000 3,000 100
NLTCS 16,181 2,157 3,236 16
Plants 17,412 2,321 3,482 69
Reuters-52 6,532 1,028 1,540 941
School 44,443 5,925 8,888 66
Temperature 13,541 1,805 2,708 216
Traffic 3,311 441 662 128
WebKB 2,803 558 838 843
Wine 4,874 650 975 48

To analyze Della Pietra et al.’s algorithm we also need
m, the current number of features in the model. In
each iteration, the algorithm specializes each feature
by conjoining it to every variable and every other fea-
ture in the model. Thus, it makes O(m2 + mv) calls
to weight learning in each iteration. Even though
Della Pietra et al.’s algorithm is not performing an
exhaustive search, it could still end up adding every
possible feature to the model, resulting in O(2v) iter-
ations of search. Thus, the worst case complexity is
O(m22v + mv2v). In practice, the algorithm requires
significantly fewer than O(2v) iterations to converge.

5. Empirical Evaluation

In this section, we evaluate our approach on 21 real-
world data sets. To our knowledge, this is the most ex-
tensive empirical evaluation of Markov network struc-
ture learning algorithms to date. We compare BLM
to the standard top-down Markov network structure
learning algorithm (Della Pietra et al., 1997) and the
L1 approach of Ravikumar et al. (2010). Additionally,
we compare with BUSL (Mihalkova & Mooney, 2007),
a bottom-up algorithm for learning the structure of a
Markov (logic) network.

We altered Della Pietra et al.’s algorithm to only eval-
uate candidate features that match at least one exam-
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ple. This simple extension vastly reduces the number
of candidate features and greatly improves the algo-
rithm’s efficiency. Both BLM and Della Pietra et al.’s
algorithm work with any score function. In this pa-
per, we optimize the pseudo-likelihood of the data via
the limited-memory BFGS algorithm (Liu & Nocedal,
1989). Optimizing the likelihood of the data is pro-
hibitively expensive for the domains we consider. We
used the OWL-QN package (Andrew & Gao, 2007) to
implement Ravikumar et al.’s approach and we used
the publicly available implementation of BUSL.1

We only allow BLM and Della Pietra et al.’s algorithm
to construct positive features, which greatly improves
efficiency. This is not a restriction, as any Markov
network can be represented using only features of this
form (Wexler & Meek, 2008). Both approaches es-
timate a candidate feature’s weight by holding the
weights of the other features in the model constant.
We first describe the data sets we use and then present
and discuss our experimental results.

5.1. Tasks

Table 1 describes the characteristics of each data set.2

Since none of the algorithms can handle numeric data,
we discretized all continuous variables by constructing
four equal size bins and the bins widths were set us-
ing the training data. We binarized all variables (i.e.,
created one Boolean variable for each value).

From the UCI machine learning repository (Blake
& Merz, 2000) we used: Abalone, Adult, Cover-
type, MSNBC anonymous Web data, Plants and
Wine domains. Temperature and Traffic are sensor
network data sets and were used in Checketka and
Guestrin (2007). The versions of the EachMovie, KD-
DCup and MSWeb domains came from Lowd and
Domingos (2008). The School domain (Yang et al.,
2002) contains information about math examinations
results in England and the National Long Term Care
Survey (NLTCS) data consist of binary variables that
measure an individual’s ability to perform different
daily living activities. The Facebook data comes from
the social networking site. We constructed examples
by comparing two individuals according to the at-
tributes available on their profiles.

We used three text domains: 20 Newsgroups, Reuters-
52 and WebKB. Finally, we considered several collab-
orative filtering problems: Audio, Book (Ziegler et al.,
2005), Jester (Goldberg et al., 2001) and the Netflix

1Code for BLM and Della Pietra et al. is available at
http://alchemy.cs.washington.edu/papers/davis10a/.

2Data sets and their descriptions are available at
http://alchemy.cs.washington.edu/papers/davis10a/.

challenge data. We reduced each problem to the equiv-
alent of “rated ” or “not-rated.”

5.2. Methodology

We performed two sets of experiments. The first ex-
periment compared the accuracy and run time perfor-
mance of the BLM compared to the other three al-
gorithms. We also included the performance achieved
by just using the atomic features which capture the
marginal probability of each variable. This baseline
provides a “sanity check” to ensure that we are actu-
ally learning something in each domain. In the second
set of experiments, we performed two lesions studies on
BLM. First, we compared against using a fixed k size
of 1. Second, we compared against using generalized
Hamming distance as the distance measure.

Like Lee et al. (2007), we evaluated our algorithm
using test set conditional marginal log-likelihood
(CMLL). Calculating the CMLL required dividing the
variables into a query set Q and an evidence set E.
Then, for each test example we compute CMLL(X =
x) =

∑
i∈Q logP (Xi = xi|E). For each domain, we di-

vided the variables into four disjoint groups. One set
served as the query variables while the remaining three
sets served as evidence. We repeated this procedure
such that each set served as the query variables. We
computed the conditional marginal probabilities using
the MC-SAT inference algorithm (Poon & Domingos,
2006). For all three domains, we set the burn-in to
1,000 samples and then computed the probability us-
ing the next 10,000 samples.

For all algorithms, we imposed a 24-hour time
limit for training. For BLM, we used K =
{1, 2, 5, 10, 20, 25, 50, 100, 200} and Q = 1 for GVDM.
We did not tune these parameters. For BLM, we varied
how often we relearned the full set of feature weights
and considered doing so after every 1, 5, 10 and 25 ac-
cepted feature generalizations. We used the tuning set
to pick the best setting for this parameter. For all al-
gorithms we tried a variety of values for penalty α, and
used the tuning set to select the best setting for each
domain. For the L1 approach, we tried both meth-
ods described in Subsection 2.4 to enforce consistency.
BUSL ran out of memory when learning on the full
training set for each domain. We tried various differ-
ent subsamples of the data and report the best test set
results that we obtained.

5.3. Results

Table 2 presents CMLLs and run times for all 21 do-
mains. CMLL is averaged over all test examples and
run time is reported in minutes. BLM significantly
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Table 2. Experimental results. Atomic is a model that assumes all variables are independent. CMLL is the average CMLL
per test example. Run time is in minutes.

CMLL Run Time (Minutes)
Data Set BLM DP L1 BUSL Atomic BLM DP L1 BUSL
20 Newsgroups -147.461 -158.552 -139.515 -155.005 -160.610 468.9 1440.0 347.7 468.0
Abalone -8.075 -7.780 -74.574 -11.547 -17.657 0.1 2.5 0.1 5.8
Adult -28.673 -24.626 -48.982 -24.241 -24.903 260.9 22.0 18.7 16.2
Audio -37.385 -39.224 -37.276 -42.163 -49.362 434.3 1398.5 2.7 1020.2
Book -34.768 -39.254 -35.517 -38.522 -41.308 47.3 1440.0 25.5 208.4
Covertype -19.464 -18.959 -24.527 -26.286 -28.393 181.9 1440.0 4.3 11.1
EachMovie -58.852 -67.175 -52.957 -67.540 -84.102 41.3 1440.0 62.1 235.8
Facebook -9.749 -12.107 -15.409 -9.216 -12.840 1.5 5.6 57.6 1046.8
Jester -53.025 -53.999 -53.226 -62.126 -63.891 350.2 1440.0 3.2 11.3
KDDCup 2000 -2.099 -2.112 -2.165 -3.104 -2.456 62.9 1440.0 10.4 3.4
MSNBC -5.892 -5.957 -6.332 -6.735 -6.780 203.5 1440.0 1.2 4.8
MSWeb -8.936 -9.187 -9.476 -10.476 -11.720 64.8 1440.0 40.5 262.3
Netflix -56.598 -57.429 -56.129 -59.945 -64.578 1367.8 1440.0 4.1 228.6
NLTCS -5.253 -5.220 -5.278 -8.414 -9.241 24.5 15.8 0.1 3.9
Plants -10.960 -11.143 -10.962 -26.045 -31.321 514.6 1440.0 3.2 22.5
Reuters-52 -94.249 -108.449 -85.950 -105.956 -112.880 170.9 1440.0 148.7 1440.0
School -16.983 -16.170 -25.330 -21.564 -22.430 213.0 1440.0 4.9 4.8
Temperature -52.497 -65.847 -140.391 -78.375 -113.026 569.3 1440.0 21.0 2.6
Traffic -34.475 -29.266 -210.014 -40.251 -72.014 6.6 1440.0 1.9 35.8
WebKB -166.811 -178.030 -151.615 -174.774 -183.875 49.9 1440.0 55.3 1048.0
Wine -24.559 -23.765 -50.615 -27.138 -27.261 5.8 117.9 0.1 3.5

outperforms the other three approaches in terms of the
learned model’s accuracy. It finishes first or second in
20 of 21 domains in terms of accuracy.

BLM outperforms Della Pietra et al.’s algorithm on
14 of the 21 domains. BLM significantly outperforms
Della Pietra et al. at the 0.032 significance level ac-
cording to a Wilcoxon signed-ranks test. BLM has a
faster run time than Della Pietra et al. on 19 domains.
BLM performance can be explained by its greater
ability to avoid local optima and its improved effi-
ciency, which allows it to learn larger models as well as
models that contain longer features. On 20 domains,
its learned model contains more features than Della
Pietra et al.’s model. Additionally, on 20 domains,
the average length of a feature included in BLM’s
learned model is higher than that of Della Pietra et
al.’s learned model.3

BLM outperforms Ravikumar et al.’s L1 approach on
15 of the 21 domains. BLM outperforms L1 at the
0.043 significance level according to a Wilcoxon signed-
ranks test. BLM is better on the majority of the do-
mains because many problems require longer features
to capture the regularities present in them. In domains
where short features are sufficient or that are highly

3Full results are available in the online appendix
http://alchemy.cs.washington.edu/papers/davis10a/.

sparse, L1 should do well. BLM can never induce more
features than there are training examples. L1 wins on
all three text domains as the pairwise feature induction
approach of L1 corresponds to learning a bigram model
of text, which is known to work well in practice. The
four domains where L1 results in the largest improve-
ment all have a large number of attributes (≥ 500)
and L1’s learned model contained three to ten times
more features than there are examples in the training
set. In general, the L1 approach is faster than BLM.
However, in four of the six domains in which L1 wins
on accuracy, it is either slower or has comparable run
time to BLM.

BLM outperforms BUSL at the 0.0006 significance
level according to a Wilcoxon signed-ranks test. The
run time of BUSL is not comparable to the other algo-
rithms due to the subsampling we needed to perform
in order for it run. Only on three domains could it run
on more than 200 examples and it was never able to
run on more than 1, 000 examples.

In the second set of experiments, BLM outperformed
its two variants. It beat using a fixed k = 1 on 14 of 21
domains. The difference in performance is significant
at the 0.012 significance level according a Wilcoxon
signed-ranks test. Furthermore, running with a fixed
k = 1 is slower on 20 of 21 domains. BLM with GVDM
outperforms BLM with Hamming distance 14 of 21 do-
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mains. GVDM outperforms Hamming distance at the
0.077 significance level according a Wilcoxon signed-
ranks test. There is no general trend in run time when
comparing the distance metrics. These results confirm
our decisions to consider multiple k sizes and to use
GVDM as the distance metric.4

6. Conclusions and Future Work

This paper proposed bottom-up search as an alter-
native approach to top-down search for learning the
structure of a Markov network. Bottom-up learning
overcomes some of the inefficiency and myopia of top-
down learning by using the data more directly to guide
the search. Our BLM algorithm starts with complete
examples as the initial features, and gradually gener-
alizes them to cover nearby high-probability regions.
Experiments in three domains show that this approach
is more accurate than the standard top-down one. Fur-
thermore, BLM is significantly more efficient than the
standard top-down approach.

Directions for future work include: theoretical anal-
ysis of BLM; measuring how the training-set size af-
fects performance; validation on additional domains;
extending the algorithm to relational domains; etc.
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