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Abstract

Dimension reduction is popular for learning
predictive models in high-dimensional spaces.
It can highlight the relevant part of the fea-
ture space and avoid the curse of dimension-
ality. However, it can also be harmful be-
cause any reduction loses information. In
this paper, we propose the projection penalty

framework to make use of dimension reduc-
tion without losing valuable information.

Reducing the feature space before learning
predictive models can be viewed as restrict-
ing the model search to some parameter sub-
space. The idea of projection penalties is
that instead of restricting the search to a pa-
rameter subspace, we can search in the full
space but penalize the projection distance to
this subspace. Dimension reduction is used
to guide the search, rather than to restrict it.

We propose projection penalties for linear di-
mension reduction, and then generalize to
kernel-based reduction and other nonlinear
methods. We test projection penalties with
various dimension reduction techniques in
different prediction tasks, including princi-
pal component regression and partial least
squares in regression tasks, kernel dimension
reduction in face recognition, and latent topic
modeling in text classification. Experimental
results show that projection penalties are a
more effective and reliable way to make use
of dimension reduction techniques.

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

1. Introduction

Learning a model in high-dimensional spaces with lim-
ited training examples is a difficult task. As a result,
researchers have invented various dimension reduction
techniques to reduce the feature space. A dimension
reduction method may focus on feature selection or
feature extraction, can be linear or nonlinear, may
utilize the target variable (supervised) or not (unsu-
pervised), and may be specifically designed for regres-
sion or classification. Despite the wide variety of ap-
proaches, dimension reduction is useful for learning
predictive models because it can discover and highlight
the relevant part of the feature space in fewer dimen-
sions. However, performing dimension reduction and
then learning in the reduced space can also degrade the
prediction performance, because any reduction loses
information. Indeed, it is difficult to tell whether the
information lost by a dimension reduction procedure
is relevant to a prediction task or not.

In this paper, we propose projection penalties to en-
able predictive modeling to gain from dimension reduc-
tion techniques without losing relevant information. A
reduction of the feature space can be viewed as a re-
striction of model search to a parameter subspace. The
basic idea of projection penalties is that, instead of re-
stricting model search to a parameter subspace, we can
still search in the full parameter space but penalize the
projection distance to this subspace. As a result, di-
mension reduction is used to guide the model search
in the parameter space, rather than to restrict it.

This paper is organized as follows. Section 2 proposes
the projection penalty framework. In Section 2.1 we
discuss the connection between a linear dimension re-
duction and the corresponding parameter subspace. In
Section 2.2 we introduce projection penalties for linear
dimension reduction. In Section 2.3 we generalize pro-
jection penalties to kernel-based dimension reduction.
Then in Section 2.4 and 2.5, we discuss two exten-
sions to our framework: regularization in the parame-
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ter subspace and adaptation to an arbitrary nonlinear
reduction technique. Section 3 presents our experi-
mental results. In Section 4 we discuss related work.
Section 5 concludes the paper.

2. Projection Penalties

In this section we propose the projection penalty
framework, which enables us to use a given dimension
reduction to improve predictive modeling without the
risk of losing relevant information.

2.1. Dimension reduction and parameter

subspace

Consider learning a linear prediction model (w, b) in
a p-dimensional space by minimizing an empirical loss
L given a set of n training examples {xi, yi}

n
i=1

:

argmin
w∈Rp,b

n∑

i=1

L(yi,w
Txi + b) (1)

where the parameter vector w ∈ Rp and the intercept
b represent the prediction model, and xi and yi are the
p-dimensional feature vector and the response variable
of the ith example, respectively. The empirical loss
L depends on the choice of prediction models, e.g.,
squared error loss, logistic log-likelihood loss or hinge
loss. If the dimension p of the feature space is high, a
penalty term J(w) may be added to eq. (1) to regular-
ize the model complexity, such as an ℓ2-norm penalty
in ridge regression (Tikhonov & Arsenin, 1977) and
support vector machines (Vapnik, 1995) and an ℓ1-
norm penalty in lasso (Tibshirani, 1996).

A linear reduction of a p-dimensional feature space can
be represented as a d× p matrix P where d < p is the
dimension of the reduced feature space. For an exam-
ple x in the original feature space, Px is the represen-
tation in the reduced space. In this sense, performing
a linear dimension reduction and then learning predic-
tive models in the reduced space can be written as:

argmin
v∈Rd,b

n∑

i=1

L(yi,v
T (Pxi) + b) (2)

where v ∈ Rd is the parameter vector learned in the
reduced feature space. Eq. (2) can be rewritten as:

argmin
v∈Rd,b

n∑

i=1

L(yi, (P
Tv)Txi + b) (3)

Comparing eq. (3) with eq. (1), we see the connection
between a linear reduction of the feature space and the
restriction on the model parameter space. Specifically,

performing a linear reduction P in the feature space
simply corresponds to confining the p-dimensional pa-
rameter vector w to the following subspace:

MP = {w ∈ Rp | w = PTv, ∃v ∈ Rd} (4)

In this sense, eq. (2) is equivalent to:

argmin
w∈MP ,b

n∑

i=1

L(yi,w
Txi + b) (5)

2.2. Projection penalties for linear reduction

In eq. (5) we see that performing a linear dimension
reduction P in the feature space is equivalent to re-
stricting the model search to a parameter subspace
MP as defined in eq. (4). From the perspective of
model search, we eliminate all candidates that are not
in MP . This is risky since there is no guarantee that
the optimal model in Rp for a prediction task will be-
long to the given subspace MP .

We propose to search models in the full parameter
space and penalize the projection distance to MP .
This leads to the formulation of a projection penalty
for a linear dimension reduction P :

argmin
w∈Rp,b

n∑

i=1

L(yi,w
Txi + b) + min

w
∗∈MP

λJ(w −w∗)

or using the definition of MP in (4), we have:

argmin
w∈Rp,b

n∑

i=1

L(yi,w
Txi+b)+ min

v∈Rd
λJ(w−PTv) (6)

where λ is a regularization parameter, J() is a penalty
function such as ‖‖2

2
or ‖‖1, v ∈ Rd is a parameter

vector on the reduced feature space and w∗ = PTv

defines a member in the parameter subspace MP .
Eq. (6) allows us to learn the parameter vector w in
the full parameter space Rp and penalize the part of
w that can not be interpreted by models in MP . This
is different from directly performing a dimension re-
duction P , as shown in eq. (5), where model search is
completely restricted to the parameter subspace MP .

It is straightforward to solve eq. (6) by a change of
notation w̃ = w − PTv:

argmin
w̃∈Rp,v∈Rd,b

n∑

i=1

L(yi, w̃
Txi + vT (Pxi) + b) + λJ(w̃)

(7)
This can viewed as redefining the representation for
each training example xi as a (p+ d)-dimensional vec-
tor [xi; (Pxi)], and solving the regularized linear model
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([w̃;v], b) on the new representation. The specific al-
gorithm for solving eq. (7) depends on the choice of em-
pirical loss L and penalty function J , e.g., conjugate
gradient methods, subgradient methods, or methods
for constrained optimization (Boyd & Vandenberghe,
2004). The parameter vector w can be computed as:

w = w̃ + PTv

2.3. Projection penalties for kernel-based

reduction

Section 2.2 shows that a linear dimension reduction
can be used to penalize a linear model via a projec-
tion penalty, as in eq. (6). A limitation of eq. (6) is
that the resulting model is still a linear model. Re-
cently, SVMs and other kernel-based learning algo-
rithms have drawn considerable interest in machine
learning (Muller et al., 2001). In this section, we gen-
eralize projection penalties to dimension reduction and
predictive modeling in kernel feature spaces.

Consider learning a prediction model w given a set of
n training examples {xi, yi}

n
i=1

and a dimension reduc-
tion operator P , where both the prediction model and
the reduction operator are designed to operate on a
kernel feature space F . Each training example is rep-
resented as Φ(xi) ∈ F ⊆ Rp using the kernel feature
mapping Φ. The feature mapping Φ is characterized
by its inner product via a Mercer kernel k(·, ·):

(Φ(xi) · Φ(xj)) = k(xi,xj)

Depending on the choice of kernel functions, the ker-
nel feature space is usually a very high (or infinite)
dimensional space and thus p is large or infinite.

Analogously to eq. (6), the projection penalty is:

argmin
w∈Rp,b

n∑

i=1

L(yi,w
TΦ(xi) + b) + min

v∈Rd
λJ(w − PTv)

(8)
where w, v and P are of size p × 1, d × 1 and d × p,
respectively. The reduction operator P is provided
by a kernel-based dimension reduction such as kernel
PCA (Schölkopf et al., 1998) or generalized discrimi-
nant analysis (Baudat & Anouar, 2000). Thus, each
p× 1 column basis of PT is represented by a weighted
combination of examples in kernel feature space F .1

To solve w in eq. (8), we consider classification prob-
lems and use the hinge loss of SVMs as the empirical
loss L() and the ℓ2-norm penalty as J(). By intro-
ducing slack variables {ξi}

n
i=1

for hinge loss (Burges,

1These can be the same set of examples {Φ(xi)}
n

i=1 for
learning w, or a different set of examples in F .

1998), we have the following quadratic program:

argmin
w∈Rp,v∈Rd,b,{ξi}n

i=1

1

2
‖ w− PTv ‖2

2
+ C

n∑

i=1

ξi (9)

s.t. yi(w
TΦ(xi) + b) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

where we use C ∝ 1

λ
to replace λ in eq. (8). Also by

changing to w̃ = w− PTv, we have:

argmin
w̃∈Rp,v∈Rd,b,{ξi}n

i=1

1

2
‖ w̃ ‖22 + C

n∑

i=1

ξi (10)

s.t. yi(w̃
TΦ(xi) + vTPΦ(xi) + b) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

Note that the reduction of examples from F into d-
dimensional space, i.e., PΦ(xi), is actually performed
via kernel tricks (Muller et al., 2001).

Since the primal problem (10) is convex, the KKT
conditions are sufficient and necessary for optimal pri-
mal and dual solutions (Boyd & Vandenberghe, 2004).
To derive KKT conditions and the dual, we add La-
grangian multipliers {αi}

n
i=1

and {µi}
n
i=1

for the con-
straints in the primal (10), which gives the Lagrangian:

L =
1

2
‖ w̃ ‖2

2
+C

n∑

i=1

ξi

−

n∑

i=1

αiyi(w̃
TΦ(xi) + vTPΦ(xi) + b)

−
n∑

i=1

αi(ξi − 1)−
n∑

i=1

µiξi

s.t. αi ≥ 0, µi ≥ 0, ∀i

The KKT optimality conditions include:

∂L

∂w̃
= w̃ −

n∑

i=1

αiyiΦ(xi) = 0 (11)

∂L

∂v
= −

n∑

i=1

αiyiPΦ(xi) = 0 (12)

∂L

∂b
= −

n∑

i=1

αiyi = 0

∂L

∂ξi
= C − αi − µi = 0

yi(w̃
TΦ(xi) + vTPΦ(xi) + b)− 1 + ξi ≥ 0

ξi ≥ 0

αi ≥ 0

µi ≥ 0

αi[yi(w̃
TΦ(xi) + vTPΦ(xi) + b)− 1 + ξi] = 0

µiξi = 0



Projection Penalties: Dimension Reduction without Loss

Using the above conditions to eliminate primal vari-
ables in the Lagrangian, we have the dual problem:

argmax
{αi}n

i=1

∑

i

αi −
1

2

∑

i,j

αiαjyiyjk(xi,xj) (13)

s.t. 0 ≤ αi ≤ C, ∀i
n∑

i=1

αiyi = 0 (14)

n∑

i=1

αiyiPΦ(xi) = 0 (15)

where the kernel k(xi,xj) computes Φ(xi)
TΦ(xj).

This dual can be solved as a quadratic programming
problem, and w̃, according to condition (11), is:

w̃ =
n∑

i=1

αiyiΦ(xi) (16)

Note that the dual form (13) is similar to the dual form
of SVMs (Burges, 1998), with one key difference: the
SVM dual form has only one equality constraint (14),
while the above dual form has additional d equality
constraints (15). These d additional constraints basi-
cally say that dual solutions {αi}

n
i=1

and the resulting
w̃ do not operate on the reduced feature space (w.r.t.
the training examples). This is very intuitive: w̃ in
the primal form (10) is defined by a change of vari-
able: w̃ = w − PTv. Thus, w̃ refers to the part of
w that can not be replaced by operating on the re-
duced feature space. This also coincides with the fact
that the constraints (15) result from the KKT condi-
tion (12), which says the derivative of the Lagrangian
w.r.t. v ∈ Rd is zero. Indeed, if w̃ is still operating on
the reduced space, then v ∈ Rd should be changed to
take the responsibility of w̃ since v is not penalized in
the primal form (10).

To solve for v and b, we plug the solution to w̃ (solved
as (16)) into the primal form (10). The quadratic
term becomes a constant, and therefore, v and b (and
slack variables {ξi}

n
i=1

) can be solved efficiently in (10)
as a linear programming problem. Note that both
w̃TΦ(xi) and PΦ(xi) in the constraints are computed
via kernel tricks and treated as known. Finally, given
w̃, v and b, the prediction on a new example x is:

w̃TΦ(x) + vTPΦ(xi) + b

2.4. Regularization in the parameter subspace

Section 2.2 and 2.3 propose projection penalties for lin-
ear dimension reduction and kernel-based dimension
reduction. In both cases, there is no penalty on the

the parameter vector v ∈ Rd that operates on the re-
duced feature space. In some applications where the
number of training examples is very small or the di-
mensionality of the reduced space is relatively high, a
small penalty on v ∈ Rd will be helpful for both the
generalization of the model and the numerical stability
for optimization. Including a small penalty on v ∈ Rd

into eq. (6) or eq. (7) is straightforward and will not
affect the optimization algorithm. But for projection
penalties in kernel feature space, such as in eq. (10),
including another penalty will change the dual form in
a non-trivial way, and thus is the focus of this section.

We start from eq. (10) and add a new penalty on v:

argmin
w̃∈Rp,v∈Rd,b,{ξi}n

i=1

1

2
‖ w̃ ‖22 +

γ

2
‖ v ‖22 + C

n∑

i=1

ξi (17)

s.t. yi(w̃
TΦ(xi) + vTPΦ(xi) + b) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

where 0 ≤ γ ≤ 1 is a new regularization parameter.
Adding Lagrangian multipliers {αi}

n
i=1

and {µi}
n
i=1

for the two sets of constraints, the Lagrangian is:

L =
1

2
‖ w̃ ‖2

2
+
γ

2
‖ v ‖2

2
+C

n∑

i=1

ξi

−

n∑

i=1

αiyi(w̃
TΦ(xi) + vTPΦ(xi) + b)

−
n∑

i=1

αi(ξi − 1)−
n∑

i=1

µiξi

s.t. αi ≥ 0, µi ≥ 0, ∀i

Most KKT conditions remain the same as in Sec-
tion 2.3, except condition (12), which is now:

∂L

∂v
= γv−

n∑

i=1

αiyiPΦ(xi) = 0 (18)

Given the new Lagrangian and the new set of KKT
conditions, the dual becomes:

argmax
{αi}n

i=1

∑

i

αi −
1

2

∑

i,j

αiαjyiyjk(xi,xj) (19)

−
1

2γ

∑

i,j

αiαjyiyj(PΦ(xi))
T (PΦ(xj))

s.t. 0 ≤ αi ≤ C, ∀i
n∑

i=1

αiyi = 0

Comparing this dual form to the dual (13), the con-
straints (15) are removed, and instead, the quadratic
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term in the objective now includes a new part:
− 1

2γ

∑
i,j αiαjyiyj(PΦ(xi))

T (PΦ(xj)). We can see

the connection between duals (19) and (13) by set-
ting γ → 0. In this case, the new dual has an in-
finite weight on −

∑
i,j αiαjyiyj(PΦ(xi))

T (PΦ(xj)).
The matrix of inner products is positive semidefi-
nite. Therefore, to maximize objective (19), the so-
lution {αi}

n
i=1

must satisfy the constraints (15) in or-
der to keep the infinitely weighted non-positive term
−
∑

i,j αiαjyiyj(PΦ(xi))
T (PΦ(xj)) as zero. In this

sense, the dual (19) comes back to (13) when γ → 0.

Given the solution {αi}
n
i=1

to the dual (19), w̃ and v

are obtained via KKT conditions (11) and (18):

w̃ =
n∑

i=1

αiyiΦ(xi)

v =
1

γ

n∑

i=1

αiyiPΦ(xi)

Finally, b can be obtained similarly as in
SVMs (Burges, 1998) via examples that lie on
the margin (i.e., examples with 0 < αi < C).

2.5. Adaption to other nonlinear reduction

In this section, we extend projection penalties to work
with an arbitrary reduction operation. Recall that
projection penalties proposed in Section 2.2 and 2.3
requires the reduction operator P to be either linear
in the input space or at least “linear” in the kernel
feature space. This requirement is the basis for defin-
ing the parameter subspace MP in eq. (4), which is
then used to formulate eq. (6) and eq. (8). However,
when we proceed to eq. (7) and eq. (10), the parts that
involve the reduction operator P are just Pxi in (7)
and PΦ(xi) in (10). Therefore, a simple trick is to re-
place these two terms by an arbitrary reduction func-
tion Ψ(xi). Note that eq. (7) and (10) with this trick
are no longer connected to eq. (6) and (8), but they
can still be solved as discussed in Section 2.2 and 2.3.
As long as we can apply the same function Ψ(x) to
any new example x, this trick will work for prediction.

This trick may be very useful for some application
domains. Consider a fully probabilistic topic model
such as latent Dirichlet allocation (Blei et al., 2003).
The reduction operation is neither linear in the input
space nor linear in any kernel space. In fact, extract-
ing a topic distribution for a given document via la-
tent Dirichlet allocation involves intractable inference
of posterior distribution. In this sense, the trick allows
us to gain from a topic model when learning either lin-
ear classifiers or kernel-based classifiers on text.

For learning a prediction model in a kernel space, this

Table 1. R
2 for predicting Boston housing prices: means

and standard errors over 500 random runs.
R2: Mean R2: Standard Error

Ridge 49.53% 0.98%
PCR(d = 11) 52.93% 0.96%
PLS (d = 11) 52.58% 0.97%

Proj-PCR(d = 4) 53.55% 0.68%
Proj-PLS (d = 1) 53.63% 0.72%

trick also enables us to use a different kernel or the
same kernel with different kernel parameters for the
dimension reduction operation. This is not allowed
in Section 2.3, since the kernel-based reduction P in
eq. (8) was assumed to operate on exactly the same
kernel feature space as the prediction model w.

3. Empirical Studies

In this section, we present our empirical studies on ap-
plying projection penalties to different dimension re-
duction techniques for housing price prediction, text
classification, and face recognition.

3.1. Linear Reduction in Regression

Experiment Settings. We use the Boston Hous-
ing data set from the UCI Machine Learning Repos-
itory2 as an example regression task. The data set
contains 506 examples, each corresponding to a U.S.
census tract in the Boston area. The target variable is
the median value of owner-occupied homes and the 13
input variables include crime rate, student-teacher ra-
tio, tax rate, and so forth. We conducted 500 random
runs in our experiments. In each run, we randomly
sample 50 training examples and the remaining 456
records are used as testing examples. We use R2, one
minus the proportion of unexplained variance, as the
performance measure for this regression task.

CompetingMethods. We study the following meth-
ods. 1) Ridge regression (Ridge) trained on the orig-
inal 13 variables. 2) Principal component regression
(PCR), which first performs dimension reduction us-
ing PCA and then fits a least squares model on the
principal components. 3) Partial least squares (PLS ),
which can be viewed as sequentially extracting a num-
ber of components using both input variables and the
response variable and fitting a least squares model
on the extracted components. 4) Projection penalty
(Proj-PCR) in eq. (6) with PCA as the dimension re-
duction P and least squares as the loss function L.
5) Projection penalty (Proj-PLS ) in eq. (6) using a

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
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trained partial least squares model to provide dimen-
sion reduction and least squares as the loss function.
For ridge regression and the projection penalty mod-
els, the regularization parameter λ is chosen by 5-fold
cross-validation from the range [10−8, 10−6, . . . , 1010].
Also, for the projection penalty models, λ

1000
||β||2

2
is

added to penalize the model in the reduced space, as
discussed in Section 2.4. The dimension of the reduced
space d is chosen for each model to optimize the per-
formance.

Results. The experimental results are shown in Ta-
ble 1. For each model, we report the average R2 over
500 random runs as well as the standard errors. The
optimal dimension of the reduced space is also dis-
played with each model (if applicable). From the re-
sults we can see that dimension reduction techniques
are helpful for predicting the house prices. Both prin-
cipal component regression (PCR) and partial least
squares (PLS) perform better than ridge regression.
Projection penalty models (Proj-PCR and Proj-PLS)
further improve the predictions.

3.2. Topic Modeling in Text Classification

Experiment Settings. We use the 20-Newsgroups
data set3, which contains 11314 training and 7532 test-
ing documents collected from 20 newsgroups. We de-
note training and testing sets as Dtr and Dts, respec-
tively. Documents are represented as bags of words.
We select the most frequent 200 words in each news-
group except the 20 most frequent common words
across all newsgroups. This leads to p = 1443 words
(i.e., features) in the vocabulary. Several latent Dirich-
let allocation (Blei et al., 2003) models are estimated
from Dtr and used as dimension reduction models,
with the number of topics d specified as 10, 20, 30, 50,
and 100. We construct 190 binary classification tasks
using all pairs of newsgroups. For each task, we ran-
domly sample 2%, 5% and 10% of the relevant docu-
ments in Dtr as training examples for classifiers. We
use the average classification error over 190 tasks as
the performance measure. This procedure is repeated
for 20 random runs. The testing documents for each
task are fixed as all relevant documents in Dts.

Competing Methods. We consider three methods.
1) ℓ2-regularized logistic regression (L2-LGR) in the
original feature space: we directly train a logistic re-
gression classifier for each task, and use ℓ2 regular-
ization to prevent overfitting in the high-dimensional
feature (word) space. 2) Logistic regression in the
topic space (LGR-Topic): we use latent Dirichlet allo-
cation to reduce the feature space (into topic space),

3http://people.csail.mit.edu/jrennie/20newsgroups

Table 2. Text classification error averaged over tasks (2%
train data): mean and standard error over 20 random runs

Mean Standard Error

L2-LGR 17.78% 0.082%
LGR-Topic(d = 30) 12.51% 0.059%
Proj-Topic(d = 30) 10.36% 0.067%

Table 3. Text classification error averaged over tasks (5%
train data): mean and standard error over 20 random runs

Mean Standard Error

L2-LGR 11.08% 0.039%
LGR-Topic(d = 30) 10.45% 0.049%
Proj-Topic(d = 30) 7.87% 0.042%

Table 4. Text classification error averaged over tasks (10%
train data): mean and standard error over 20 random runs

Mean Standard Error

L2-LGR 8.30% 0.029%
LGR-Topic(d = 30) 9.39% 0.027%
Proj-Topic(d = 30) 6.77% 0.029%

and then train a logistic regression for each task in
the topic space. 3) Projection penalty (Proj-Topic)
as in eq. (7) with latent Dirichlet allocation as the
dimension reduction operator. Note that the trick dis-
cussed in Section 2.5 is needed since extracting the
topic distribution is not a linear reduction of the word
space. The parameter λ in the ℓ2 regularization is cho-
sen via 5-fold stratified cross-validation from the range
[10−8, 10−6, . . . , 1010]. For methods using dimension
reduction, d = 30 topics gives the best performance.

Results. Empirical results on average classification
errors over tasks are shown in Tables 2, 3 and 4, with
2%, 5% and 10% training examples used. Means and
standard errors over 20 random runs are reported. Us-
ing a projection penalty with a topic model (Proj-
Topic) achieves the best performance in all sizes of
training sets. The performance is better than both di-
rectly fitting regularized models in the word space (L2-
LGR) and fitting models in the reduced topic space
(LGR-Topic). It is interesting to compare the perfor-
mance of L2-LGR and LGR-Topic when the training
size varies. Using 2% of the training examples, learn-
ing classifiers on topics performs significantly better
than fitting models in the original word space, as the
topic space highlights important information in a lower
dimensionality. However, when the training size is in-
creased to 10%, directly fitting a model on the word
distribution is superior to learning models in the re-
duced topic space. This confirms that the dimension
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Table 5. Face classification error averaged over tasks (3
training images per subject): mean and standard error over
50 random runs

Mean Standard Error

SVM-Kernel 16.17% 0.26%
SVM-KPCA(d = 45) 16.22% 0.25%
Proj-KPCA(d = 45) 15.33% 0.26%
SVM-GDA(d = 14) 11.21% 0.25%
Proj-GDA(d = 14) 10.38% 0.24%
SVM-OLap(d = 14) 8.58% 0.26%
Proj-OLap(d = 14) 7.93% 0.22%

Table 6. Face classification error averaged over tasks (5
training images per subject): mean and standard error over
50 random runs

Mean Standard Error

SVM-Kernel 12.68% 0.30%
SVM-KPCA(d = 75) 12.72% 0.30%
Proj-KPCA(d = 75) 12.47% 0.29%
SVM-GDA(d = 14) 9.32% 0.23%
Proj-GDA(d = 14) 7.13% 0.20%
SVM-OLap(d = 14) 4.74% 0.21%
Proj-OLap(d = 14) 4.57% 0.20%

Table 7. Face classification error averaged over tasks (7
training images per subject): mean and standard error over
50 random runs

Mean Standard Error

SVM-Kernel 11.43% 0.28%
SVM-KPCA(d = 105) 11.37% 0.29%
Proj-KPCA(d = 105) 11.19% 0.28%
SVM-GDA(d = 14) 7.59% 0.23%
Proj-GDA(d = 14) 6.37% 0.23%
SVM-OLap(d = 14) 3.43% 0.17%
Proj-OLap(d = 14) 3.40% 0.17%

reduction also loses valuable information. Finally, the
projection penalty with a topic model dominates the
other two methods for all training sizes, which indi-
cates the projection penalty improves on topic models
and also avoids the loss of information.

3.3. Kernel Methods in Face Recognition

Experiment Settings. We use the Yale face data
set4, which contains face images of 15 subjects. There
are 11 images per subject, corresponding to different
configurations in terms of expression, emotion, illumi-
nation, and wearing glasses (or not), etc. Each im-
age is scaled to 32 × 32 pixels. We vary the size of

4http://cvc.yale.edu/projects/yalefaces/yalefaces.html

the training set as 3, 5 and 7 images per subject. We
have 50 random runs for each size of training sets. In
each run, we randomly select training examples and
the rest is used as the testing set. Training examples
of all subjects are used to learn dimension reduction
models (discussed later). We consider all 105 binary
classification tasks, each classifying between two sub-
jects. The average classification error over tasks is the
performance measure, and aggregated results over 50
runs are reported.

In this experiment, we study dimension reduc-
tion and predictive modeling in a kernel feature
space. We use the degree-2 polynomial kernel
to define our kernel feature space. We con-
sider three dimension reduction methods: kernel
PCA (Schölkopf et al., 1998), generalized discriminant
analysis (GDA) (Baudat & Anouar, 2000) and orthog-
onal Laplacian faces (OLap) (Cai et al., 2006).

Competing Methods. We compare the following
methods. 1) SVM in the kernel feature space (SVM-

Kernel): train an SVM classifier for each task with
a polynomial kernel. This can be viewed as fitting
a linear model directly in the high-dimensional ker-
nel feature space. 2) SVM in the reduced feature
space (SVM-KPCA, SVM-GDA, SVM-OLap): per-
form KPCA, GDA or OLap, and then fit a linear
SVM in the reduced space. KPCA and GDA are
used with polynomial kernels. Thus, SVM-KPCA and
SVM-GDA can be viewed as a reduction of the high-
dimensional kernel feature space followed by a linear
model fit in the reduced space. 3) Projection penalty
as in eq. (17) with KPCA, GDA and OLap (Proj-
KPCA, Proj-GDA, Proj-OLap). Note that OLap is
not a kernel-based reduction technique, so the trick in
Section 2.5 is used. The regularization parameter C

for SVMs is chosen by stratified cross-validation from
the range [10−8, 10−6, . . . , 1010]. For the projection
penalty in eq. (17), we set γ = 10−5.

Results. Experimental results are shown in Ta-
bles 5, 6 and 7. The three tables present results for
3, 5 and 7 training images per subject, respectively.
The optimal dimension d of the reduced space is re-
ported with each method. In each table, SVM-Kernel

corresponds to learning a linear SVM in the kernel fea-
ture space and serves as the baseline. We observe the
following. 1) SVM-KPCA vs Proj-KPCA: KPCA is
not a very effective dimension reduction tool for clas-
sification as it does not use the information from la-
bels. SVM-KPCA performs similarly or even worse
than the baseline model. Proj-KPCA performs bet-
ter than SVM-KPCA and the baseline SVM-Kernel,
showing that the projection penalty is safe and re-
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liable when used with an ineffective reduction. 2)
SVM-GDA vs Proj-GDA: GDA is significantly more
effective than KPCA for dimension reduction. SVM-

GDA’s performance is superior to the baseline, and
Proj-GDA further improves the performance. 3) SVM-

OLap vs Proj-OLap: orthogonal Laplacian faces is a
powerful reduction technique for supervised learning.
All OLap-based methods predict better than KPCA-
and GDA-based methods. Performance of Proj-OLap

is slightly better than SVM-OLap: since OLap pro-
vides very high-quality dimension reduction for classi-
fication, SVM-OLap’s performance is approaching the
proposed Proj-OLap.

4. Related Work

This paper proposes a new approach to use dimen-
sion reduction techniques. The main contribution is a
regularization framework that utilizes the information
from dimension reduction to penalize model parame-
ters. Regularized learning has been the focus of statis-
tics and machine learning for decades. Classical ex-
amples include ridge regression (Tikhonov & Arsenin,
1977) and lasso (Tibshirani, 1996) in statistics, and
support vector machines (Vapnik, 1995; Burges, 1998)
in machine learning. Recently, designing good
regularization penalties has been one of the main
approaches for multi-task learning (Argyriou et al.,
2007) and semi-supervised learning (Belkin et al.,
2006). In (Ando & Zhang, 2005), researchers proposed
learning “predictive structures” from multiple related
tasks. This paper motivates our work in that the pre-
dictive structure discussed in the paper is actually a
parameter subspace (shared by related tasks).

5. Conclusion

In this paper, we propose the projection penalty frame-
work to make use of dimension reduction techniques
and avoid the risk of losing information. Reducing the
feature space can be viewed as restricting the model
search to some parameter subspace. The idea of a pro-
jection penalty is that instead of restricting the search
to a parameter subspace, we can still search in the
full space but penalize the projection distance to this
subspace. We propose projection penalties for linear
dimension reduction, then generalize to kernel-based
reduction and other nonlinear reduction methods. We
empirically study projection penalties with various di-
mension reduction techniques in regression, text clas-
sification, and face recognition. Experimental results
show that the projection penalty framework is an effec-
tive and reliable way to gain from dimension reduction
techniques without losing important information.
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