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Abstract

The goal of transfer learning is to improve
the learning of a new target concept given
knowledge of related source concept(s). We
introduce the first boosting-based algorithms
for transfer learning that apply to regression
tasks. First, we describe two existing clas-
sification transfer algorithms, ExpBoost and
TrAdaBoost, and show how they can be mod-
ified for regression. We then introduce exten-
sions of these algorithms that improve per-
formance significantly on controlled experi-
ments in a wide range of test domains.

1. Introduction

The idea behind transfer learning (Pan & Yang, 2009)
is that it is easier to learn a new concept (such as
how to play the trombone) if you are already familiar
with a similar concept (such as playing the trumpet).
In the context of supervised learning, inductive trans-
fer learning is often framed as the problem of learn-
ing a concept of interest, called the target concept,
given data from multiple sources: a typically small
amount of target data that reflects the target concept,
and a larger amount of source data that reflects one or
more different, but possibly related, source concepts.
A number of algorithms have been developed to ad-
dress this situation in classification settings, but much
less attention has been paid to regression settings.

One general approach that has been applied success-
fully to classification transfer is boosting. In this pa-
per, we introduce and evaluate the first boosting-based
algorithms for regression transfer. These algorithms
can be divided into two categories: algorithms that
make use of models trained on the source data, and
algorithms that use the source data directly. We first
describe an existing classification transfer algorithm
from each category (ExpBoost (Rettinger et al., 2006)
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and TrAdaBoost (Dai et al., 2007), respectively), and
we show how these algorithms can be modified for a
regression setting. Next, we present the primary con-
tribution of this paper: two new algorithms designed
to overcome shortcomings observed in these modified
algorithms. Finally, we present experimental results
for all algorithms in seven test domains.

2. Regression Transfer

In this section, we specify our learning problem and
outline two approaches to solving this problem. Then
we provide necessary background on boosting for re-
gression problems.

2.1. Problem Specification

Our goal is to learn a model of a concept ctarget

mapping feature vectors from the space X to labels
in the space Y . In binary classification problems,
Y = {0, 1}, while in the regression problems stud-
ied here, Y = R. We are given a set of training in-
stances Ttarget = {(xi, yi)}, with xi ∈ X and yi ∈ Y
for 1 ≤ i ≤ n, that reflect ctarget. In addition, we are
given data sets T 1

source, . . . , T
B
source reflecting B differ-

ent, but possibly related, concepts also mapping X to
Y . In order to learn the most accurate possible model
of ctarget, we must decide how to use both the target
and source data sets. If Ttarget is sufficiently large,
we can likely learn a good model using only this data.
However, if Ttarget is small and one or more of the
source concepts is similar to ctarget, then we may be
able to use the source data to improve our model.

2.2. ExpBoost and TrAdaBoost

In this paper, we will consider regression transfer algo-
rithms that fit into two categories: those that make use
of models trained on the source data, and those that
use the source data directly as training data. The al-
gorithms we will present in these two categories are
inspired by two boosting-based algorithms for classifi-
cation transfer, ExpBoost (Rettinger et al., 2006) and
TrAdaBoost (Dai et al., 2007). Boosting is an ensem-
ble method in which a sequence of models (or hypothe-
ses) h1 . . . hN , each mapping from X to Y , are itera-
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tively fit to some transformation of a data set using
a base learner. The outputs of these models are then
combined into a final hypothesis hf .

In ExpBoost, a separate hypothesis (or expert, hence
the name) hi is learned for each of the B source data
sets, and learning is performed using only Ttarget. At
each step of the boosting process, ExpBoost chooses to
use either the hypothesis ht learned from the weighted
training data or one of the experts, depending on
which is most accurate.

In contrast, TrAdaBoost uses the source data sets di-
rectly by combining them with Ttarget to form a sin-
gle data set. At each boosting step, TrAdaBoost in-
creases the relative weights of target instances that are
misclassified. When a source instance is misclassified,
however, its weight is decreased. In this way, TrAd-
aBoost aims to identify and make use of those source
instances that are most similar to the target data while
ignoring those that are dissimilar.

We provide additional details on these algorithms and
their extensions below, but first we address the issue of
applying boosting algorithms to regression problems.

2.3. AdaBoost and Regression

One of the best known boosting methods for clas-
sification, and the one upon which ExpBoost and
TrAdaBoost are based, is AdaBoost (specifically, Ad-
aBoost.M1) (Freund & Schapire, 1997). In AdaBoost,
each training instance receives a weight wi that is used
when learning each hypothesis; this weight indicates
the relative importance of each instance and is used
in computing the error of a hypothesis on the data
set. After each iteration, instances are reweighted,
with those instances that are not correctly classified
by the last hypothesis receiving larger weights (as in
step 5 of Algorithm 1). Thus, as the process contin-
ues, learning focuses on those instances that are most
difficult to classify.

A number of methods have been proposed for modify-
ing AdaBoost for regression, and as TrAdaBoost and
ExpBoost are based on AdaBoost, these modifications
can be used on them as well. In our work, we ex-
plored two of these methods that have been shown
to be generally effective and that can be applied to
TrAdaBoost and ExpBoost in a straightforward way:
AdaBoost.R2 and AdaBoost.RT.

The key to AdaBoost is the reweighting of those in-
stances that are misclassified at each iteration. In re-
gression problems, the output given by a hypothesis
ht for an instance xi is not correct or incorrect, but
has a real-valued error ei = |yi − ht(xi)| that may be

Algorithm 1 AdaBoost.R2 (Drucker, 1997)

Input the labeled target data set T of size n, the maximum
number of iterations N , and a base learning algorithm Learner.
Unless otherwise specified, set the initial weight vector w1 such
that w1

i = 1/n for 1 ≤ i ≤ n.

For t = 1, . . . , N :
1. Call Learner with the training set T and the distribu-
tion wt, and get a hypothesis ht : X → R.
2. Calculate the adjusted error et

i for each instance:

let Dt = maxn
j=1|yj − ht(xj)|

then et
i = |yi − ht(xi)|/Dt

3. Calculate the adjusted error of ht:

ǫt =
Pn

i=1 et
iw

t
i ; if ǫt ≥ 0.5, stop and set N = t − 1.

4. Let βt = ǫt/(1 − ǫt).
5. Update the weight vector:

wt+1
i = wt

iβ
1−et

i

t /Zt (Zt is a normalizing constant)

Output the hypothesis:
hf (x) = the weighted median of ht(x) for 1 ≤ t ≤ N , using
ln(1/βt) as the weight for hypothesis ht.

arbitrarily large. Thus, we need a method of mapping
an error ei into an adjusted error e′i that can be used
in the reweighting formula used by AdaBoost.

The method used in AdaBoost.R2 (Drucker, 1997) is
to express each error in relation to the largest error
D = maxn

i=0|ei| in such a way that each adjusted er-
ror e′i is in the range [0, 1]. In particular, one of three
possible loss functions is used: e′i = ei/D (linear),
e′i = ei

2/D2 (square), or e′i = 1 − exp(−ei/D) (expo-
nential). The degree to which instance xi is reweighted
in iteration t thus depends on how large the error of
ht is on xi relative to the error on the worst instance.
AdaBoost.RT (Shrestha & Solomatine, 2006), on the
other hand, continues to label each output as correct
(e′i = 0) or incorrect (e′i = 1) using an error threshold
φ. That is, if ei > φ, then e′i = 1; otherwise, e′i = 0.

In preliminary experiments, we found Ad-
aBoost.R2 with the linear loss function to work
consistently well, and were unable to find values
of φ that allowed AdaBoost.RT to regularly match
this performance. In the remainder of this paper
we consider only AdaBoost.R2 with the linear loss
function, shown in Algorithm 1.

3. Using Source Models

In this section we describe four regression transfer al-
gorithms based on making use of source models. In
addition to the target data, each algorithm receives
as input a set of experts HB = {h1, . . . , hB}, each
corresponding to a source data set.

3.1. ExpBoost.R2

Combining the principles of AdaBoost.R2 with those
of ExpBoost results in the new regression algorithm
ExpBoost.R2. The steps involving computing the ad-
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Algorithm 2 Transfer Stacking

Input a labeled data set T = {(xi, yi)} of size n, a set of experts
HB = {h1, . . . , hB}, the number of folds F for cross validation,
and a base learning algorithm Learner.

1. Let Oi,j = hj(xi) for 1 ≤ i ≤ n and 1 ≤ j ≤ B.
2. Perform F -fold cross validation on T using Learner. For
1 ≤ i ≤ n, let Oi,B+1 equal the output of the learned model
for the fold where instance i is in the validation set.
3. Call Learner with the full training set T and get hy-
pothesis hB+1.
4. Perform linear least squares regression on the system of
equations (

PB+1
j=1 ajOi,j) + aB+2 = yi for 1 ≤ i ≤ n; that

is, find the linear combination of hypotheses that minimizes
squared error.

Output the hypothesis:
hf (x) = a1h1(x) + ... + aB+1hB+1(x) + aB+2

justed error and outputting the final hypothesis cor-
respond to the same steps from Algorithm 1. The
primary difference is in step 1 of each boosting itera-
tion. After obtaining ht, ExpBoost.R2 computes the
weighted errors of each expert in HB on the current
weighting of T , and if any expert has a lower weighted
error than ht, ht is replaced with the best expert.

3.2. (Boosted) Transfer Stacking

In ExpBoost.R2, the final hypothesis that is produced
represents a combination of the provided experts and
additional hypotheses learned with the base learner.
However, at each boosting iteration, ExpBoost.R2
must choose between either the newly learned hypoth-
esis or a single expert. We now consider relaxing
this constraint by allowing a linear combination of hy-
potheses to be chosen at each iteration.

The details of our approach are very similar to those of
stacking (or stacked generalization) (Wolpert, 1992).
Stacking is an ensemble approach in which a meta-
level model combines multiple base models, all trained
independently on the same set of data using different
learning algorithms. The meta-level model is learned
(typically using linear regression) from a meta-level
data set created as follows. For each instance in the
original training set, a meta-level instance is created
using the outputs of each base model as features and
using the original label. Cross validation is performed
for each base learner so that the output for each in-
stance in the original training set is obtained when it is
out-of-sample. Once the meta-level model is learned, a
new instance is handled by using the model to combine
the outputs of the base models on the instance.

Here, instead of multiple base learners, we consider a
single base learner and (potentially) multiple experts
previously trained on source data; hence cross vali-
dation is required only for the base learner and not
for the experts. Thus, at each boosting iteration, we
perform linear least squares regression to find a linear

combination of the new hypothesis and experts that
best fits the data for the current iteration, and store
the result as the iteration’s hypothesis. As a result
of the similarity to stacking, we call this combination
approach transfer stacking. Since our full boosting ap-
proach reduces to calling AdaBoost.R2 with transfer
stacking as the base learner, we give details only for
transfer stacking, shown as Algorithm 2.

We note that transfer stacking by itself (without the
use of boosting) could be used as a transfer algorithm,
and so in the experiments of Section 6 we evaluate both
plain transfer stacking (using AdaBoost.R2 as its base
learner for a fair comparison) and the full approach,
which we call boosted transfer stacking.

3.3. Best Expert

Finally, as a baseline, we test the algorithm that sim-
ply uses the best expert from HB ; that is, the expert
with the lowest error on the target training data.

4. Using Source Data Directly

We now describe three algorithms that take as input
both the target and all source data sets and that train
on a combination of this data.

4.1. TrAdaBoost.R2

Combining the principles of AdaBoost.R2 with those
of TrAdaBoost results in the new regression algorithm
TrAdaBoost.R2. TrAdaBoost.R2 takes two data sets
as input, Ttarget and Tsource, of size n and m, respec-
tively, and combines them into a single set T used in
boosting. Although the original work on TrAdaBoost
does not consider the issue of multiple sources, we are
interested in cases where any number of sources may
exist. When there is more than one source, we simply
combine all source data sets into a single data set. As
TrAdaBoost.R2 handles the reweighting of each train-
ing instance separately, there should be no harm in
mixing data in this fashion, but care should be taken
in setting the initial weight vector. Our experiments
involve source data sets of (roughly) equal sizes, and
so we simply assign all source instances (and target
instances) the same weight.

As with ExpBoost.R2, the steps involving comput-
ing the adjusted error correspond to the same steps
from Algorithm 1. The primary difference between
TrAdaBoost.R2 and Algorithm 1 is in step 5 of each
iteration. Instead of treating all data equally, Exp-
Boost.R2 increases the weights of target instances by

setting wt+1

i = wt
iβ

−et

i

t /Zt and decreases the weights

of source instances by setting wt+1

i = wt
iβ

et

i/Zt,

where β = 1/(1 +
√

2 ln n/N). In addition, TrAd-
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aBoost.R2 considers only the final ⌈N/2⌉ hypotheses
when determining output (as a result of theoretical
considerations in the original TrAdaBoost).

4.2. Two-stage TrAdaBoost.R2

In analyzing the performance of TrAdaBoost.R2, we
observed it to be highly susceptible to overfitting (that
is, beyond some point, accuracy decreased as the num-
ber of boosting iterations N increased). In contrast,
AdaBoost.R2 and the algorithms of Section 3 do not
appear to suffer from this problem. After experiment-
ing with cross validation to select N , we still saw mixed
performance from TrAdaBoost.R2. Closer inspection
of the results revealed two problems. First, when the
size of Tsource is much larger than Ttarget, it can take
many iterations for the total weight of the target in-
stances to approach the total weight of the source in-
stances, and by this time the weights of the target
data may be heavily skewed – those target instances
that are either outliers or most dissimilar to the source
data may represent most of the weight. Second, even
those source instances that are representative of the
target concept tend to have their weights reduced to
zero eventually. The use of the adjusted error scheme
from AdaBoost.R2 is the reason. Whereas in TrAd-
aBoost the relevant source instances will generally be
classified correctly and not have their weights reduced,
in TrAdaBoost.R2 even small errors lead to weight re-
ductions. The fact that TrAdaBoost.R2 uses only the
hypotheses generated during the final half of boosting
iterations exacerbates this problem. (We note that we
also tried using all hypotheses, with mixed results.)

To address these problems, we designed a version of
TrAdaBoost.R2 that adjusts instance weights in two
stages. In stage one, the weights of source instances
are adjusted downwards gradually until reaching a cer-
tain point (determined through cross validation). In
stage two, the weights of all source instances are frozen
while the weights of target instances are updated as
normal in AdaBoost.R2. Only the hypotheses gener-
ated in stage two are stored and used to determine the
output of the resulting model. We call this algorithm
two-stage TrAdaBoost.R2, and show it in Algorithm
3. Note that the weighting factor βt is not chosen
based on the hypothesis error, as before, but is cho-
sen to result in a certain total weight for the target
instances. In this way, the total weight of the target
instances increases uniformly from m/(n + m) to 1 in
S steps. In our implementation, we approximated the
value of βt satisfying the conditions shown in Algo-
rithm 3 using a binary search. In addition, it is not
necessary to progress through all S steps once it has
been determined that errors are increasing.

Algorithm 3 Two-stage TrAdaBoost.R2

Input two labeled data sets Tsource (of size n) and Ttarget (of
size m), the number of steps S, the maximum number of boost-
ing iterations N , the number of folds F for cross validation, and
a base learning algorithm Learner. Let T be the combination
of Tsource and Ttarget such that the first n instances in T are
those from Tsource. Set the initial weight vector w1 such that
w1

i = 1/(n + m) for 1 ≤ i ≤ n + m.
For t = 1, . . . , S:

1. Call AdaBoost.R2′ with T , distribution wt, N , and
Learner to obtain modelt, where AdaBoost.R2′ is identi-
cal to AdaBoost.R2 except that the weights of the first n
instances are never modified. Similarly, use F -fold cross val-
idation to obtain an estimate errort of the error of modelt.
2. Call Learner with T and distribution wt, and get a
hypothesis ht : X → R.
3. Calculate the adjusted error et

i for each instance as in
AdaBoost.R2.
4. Update the weight vector:

wt+1
i =

(

wt
iβ

et

i

t /Zt, 1 ≤ i ≤ n
wt

i/Zt, n + 1 ≤ i ≤ n + m

where Zt is a normalizing constant, and βt is chosen
such that the resulting weight of the target (final m)
instances is m

(n+m)
+ t

(S−1)
(1 − m

(n+m)
).

Output modelt where t = argmini errori.

4.3. Best Uniform Initial Weight

Finally, as another baseline for comparison, we test
an algorithm that simply calls AdaBoost.R2 with the
combined source and target data, but attempts to find
the best initial ratio of total weight between the source
and target data. As in two-stage TrAdaBoost.R2, we
try total target weights ranging from m/(n + m) to 1
in S steps and choose the best weighting using cross
validation. However, in this case all source instances
have equal initial weights (i.e., there is no attempt to
set individual weights based on errors), and no distinc-
tion is made between source and target instances once
AdaBoost.R2 is called – source instances with high er-
rors will have their weights increased just like target
instances will. (In fact, this is not a boosting-specific
algorithm, as any learner could be used in place of Ad-
aBoost.R2; we use AdaBoost.R2 as the learner only to
allow a direct comparison between the results.)

5. Data Transformation

In Section 2.1, we stated that both source and tar-
get concepts had labels in the same output space. In
many regression settings in which we might consider
transfer, however, different concepts might have labels
with considerably different label distributions. While
we largely view this as a data preparation issue (e.g.,
labels can be expressed in comparable terms, such as
using relative instead of absolute prices in financial
data) and thus beyond the scope of this paper, in our
experiments we do take some simple measures to en-
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sure similar label distributions.

In algorithms making use of experts trained on source
data, we can directly modify the experts so that their
outputs on the target data fall in an appropriate range.
We do so by evaluating the experts on the target train-
ing data (thus making use only of data available to the
learner) and performing linear regression to find the
linear transformation that best fits the outputs to the
true labels. This transformation is then applied when-
ever the expert is used by the learning algorithm. In al-
gorithms using the source data directly, for each source
data set we train an expert on the set, find the linear
transformation in the same manner, and then apply
this transformation to the labels in the source data set
before passing it to the learning algorithm. On the
data sets described in the following section, we found
that this procedure was worthwhile, as it often resulted
in a significant increase in accuracy while only occa-
sionally producing a slight decrease in accuracy. We
note that trying regression with higher degree polyno-
mials tended to produce modest improvements at best
and large decreases in accuracy at worst.

6. Experiments

We now evaluate our boosting algorithms on seven dif-
ferent problems: four data sets from the UCI Repos-
itory, a space of artificial data sets created from a
known function, and two prediction problems from
multiagent systems. Experiments were performed us-
ing the WEKA 3.4 (Witten & Frank, 1999) machine
learning package with default parameters for the base
learners. In the first group of experiments, we tested
two base learners. For the remainder, we used the re-
gression algorithm in WEKA giving the lowest error
when used alone as the base learner. The following
parameters were used (where appropriate): N = 30, S
= 30, and F = 10. Experts were generated by running
AdaBoost.R2 on a complete source data set. We used
AdaBoost.R2 as the baseline non-transfer algorithm in
each experiment as it consistently produced lower er-
rors than using the base learner alone and offers a fair
comparison against boosting transfer algorithms. Re-
sults said to be significant are statistically significant
(p < .05) according to paired t-tests.

6.1. Four UCI Data Sets

We begin by comparing the results of all eight al-
gorithms described above on four data sets taken
from the UCI Machine Learning Repository1: concrete
strength, housing, auto MPG, and automobile. (We
chose the first four data sets that represented standard

1http://archive.ics.uci.edu/ml/index.html

regression problems and had a few hundred instances;
no other data sets were tried.) We divide these stan-
dard regression data sets into target and source sets
by using a variation on the technique used by Dai et
al. (2007) in a classification setting. For each data set,
we identify a continuous feature that has a moderate
degree of correlation (around 0.4) with the label. We
then sort the instances by this feature, divide the set in
thirds (low, medium, and high), and remove this fea-
ture from the resulting sets. By dividing based on a
feature moderately correlated with the label, we hope
to produce three data sets that represent slightly dif-
ferent concepts; if the correlation were zero, the con-
cepts might be identical, and if the correlation were
high, the concepts might be significantly different and
have very different label ranges. In each experiment,
we use one data set as the target and the other two as
sources, for a total of 12 experiments.

Table 1 shows the results of all eight learning algo-
rithms on all 12 experiments using both M5P model
trees and neural networks as base learners. Target
data training sets contained 25 instances. (Increas-
ing this number resulted in qualitatively similar re-
sults.) Source data sets ranged from 68 to 343 in-
stances. Each result represents the average RMS error
over 30 runs. Numbers in bold represent results that
are among the best – either the lowest error, or not sig-
nificantly higher. Numbers in italics represent results
that are not significantly better than AdaBoost.R2,
that is, those where transfer failed.

The best expert is significantly better than Ad-
aBoost.R2 exactly half of the time, but is sometimes
much worse, suggesting that the degree of similarity
between source and target data sets varies consider-
ably across the range of experiments. Not surprisingly,
the cases where the best expert fares worst are often
those where other expert-based algorithms fare poorly.

ExpBoost.R2 performs poorly, beating AdaBoost.R2
significantly only five out of 24 times. Transfer stack-
ing (performing stacking once with AdaBoost.R2 as a
base learner) and boosted transfer stacking do much
better, each beating AdaBoost.R2 significantly 15
times, suggesting that there is a benefit to considering
linear combinations of models instead of only individ-
ual models. Interestingly, the error of transfer stack-
ing is usually fairly close to that of boosted transfer
stacking when both perform well. When both perform
poorly, however, the error of boosted transfer stacking
is typically close to that of AdaBoost.R2, while the
error of transfer stacking is much worse. It may be
the case that performing transfer stacking across mul-
tiple boosting iterations is not necessary for effective
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transfer but is effective in preventing overfitting when
transfer is not possible.

TrAdaBoost.R2 (with the number of boosting itera-
tions chosen using cross validation) gives promising
but somewhat erratic results, beating AdaBoost.R2
significantly 16 times but performing much worse in a
few cases. Two-stage TrAdaBoost.R2 produces much
better results and is the clear winner in this set of
experiments, finishing among the top algorithms 20
out of 24 times and failing to significantly beat Ad-
aBoost.R2 only once. Interestingly, simply finding the
best uniform initial weighting also performs well, sig-
nificantly outperforming AdaBoost.R2 17 times.

Overall, these results suggest that making use of source
data directly is more effective than using source ex-
perts. However, the expert-based algorithms still had
the best performance in a few cases, and it is worth
noting that they are much less computationally inten-
sive, due to using smaller amounts of data (target data
only) and not requiring extensive cross validation.

For the remaining experiments, we note that boosted
transfer stacking and two-stage TrAdaBoost.R2 (the
primary contributions of this paper) continue to per-
form as well as or (usually) better than their counter-
parts (algorithms using source experts or source data,
respectively), and so for clarity we omit the results of
the other transfer algorithms.

6.2. Friedman #1

Friedman #1 (Friedman, 1991) is a well known regres-
sion problem, and we use a modified version that al-
lows us to generate a variety of related concepts. Each
instance x is a feature vector of length ten, with each
component xi drawn independently from the uniform
distribution [0, 1]. The label for each instance is de-
pendent on only the first five features:

y = a1 · 10 sin(π(b1x1 + c1) · (b2x2 + c2)) +

a2 · 20(b3x3 + c3 − 0.5)2 + a3 · 10(b4x4 + c4) +

a4 · 5(b5x5 + c5) + N(0, 1)

where N is the normal distribution, and each ai, bi,
and ci is a fixed parameter. In the original Friedman
#1 problem, each ai and bi is 1 while each ci is 0, and
we use these values when generating the target data
set Ttarget. To generate each of the source data sets,
we draw each ai and bi from N(1, 0.1d) and each ci

from N(0, 0.05d), where d is a parameter that controls
how similar the source and target data sets are.

We performed experiments using several values d and
values of 1 and 5 for B (the number of source data
sets), expecting that transfer would be most effective
for smaller values of d and the larger value of B. For

each value of d, we randomly generated 100 of each of
the following: i) target training data sets (of varying
sizes), ii) target testing sets (of size 10,000), and iii)
groups of 5 source data sets (each of size 1000). Neural
networks were chosen as the best base learner.

Figure 1 shows the results when d = 1; results for other
values of d were qualitatively similar. As expected,
using transfer increased accuracy the most for lower
values of d and higher values of B. When we used one
source, boosted transfer stacking significantly outper-
formed AdaBoost.R2 when there were 250 target in-
stances or fewer, while two-stage TrAdaBoost.R2 was
significantly better than either algorithm for up to 300
instances. With five sources, boosted transfer stacking
actually performed slightly better then 2-stage TrAd-
aBoost.R2 (the difference was significant for at least 75
instances), and both transfer algorithms were signifi-
cantly better than AdaBoost.R2 for all points plotted.

6.3. TAC SCM and TAC Travel

While the previous data sets are useful for testing the
performance of our algorithms, it is important to also
experiment with naturally occurring data in domains
where transfer would be applied in the real world.
We now consider two such domains, taken from two
e-commerce scenarios from the Trading Agent Com-
petition: a supply chain management scenario (TAC
SCM) (Eriksson et al., 2006), and a travel agent sce-
nario (TAC Travel) (Wellman et al., 2007). In both
scenarios, autonomous agents compete against each
other in simulated economies to maximize profits.
Many agents use some form of learning to make pre-
dictions about future prices, but the manner in which
these prices change over time can depend heavily on
the identities of the competing agents – essentially, dif-
ferent groups of agents represent different economies.
This fact suggests the possibility of an agent using
transfer learning to make use of past experience in dif-
ferent economies. In fact, many agents designed for
the competition, while not explicitly casting the prob-
lem as transfer learning, deal in some way with the is-
sue of making use of training data from these different
sources. While these competitions are only abstrac-
tions of real-life markets, opportunities for applying
transfer learning certainly exist in real markets as well,
and these competitions represent valuable testbeds for
research into these opportunities.

The first scenario we consider is TAC SCM, in which
agents compete as computer manufacturers. We col-
lected experience in three different economies as fol-
lows. We generated three source data sets using three
different groups of agent binaries provided by compe-
tition participants. The target data set came from the



Boosting for Regression Transfer

Table 1. RMS error on four UCI datasets, each divided into three concepts, using M5P model trees and neural networks
as base learners. Bold: lowest error; Italic: not significantly better than AdaBoost.R2 (95% confidence in each case)

Base Algorithm Data set (divided into 3 subsets)
Lrnr. Concrete Strength Housing Auto MPG Automobile
M5P AdaBoost.R2 10.26 11.01 13.26 3.65 3.59 6.52 2.90 2.92 4.35 1963 3576 4893

best expert 8.63 8.08 9.55 2.98 5.27 9.98 2.38 2.57 4.44 1374 3741 6059
ExpBoost.R2 10.11 9.64 11.76 3.02 3.74 6.66 2.53 2.94 4.39 1791 3661 4932
boosted t. stacking 8.47 7.48 10.03 3.03 3.99 7.24 2.30 2.75 4.48 1325 3480 4811
transfer stacking 8.60 7.31 10.17 3.07 5.49 8.39 2.47 2.65 4.57 1327 3631 5640
best unif. init. wt. 10.25 6.98 8.66 2.99 3.42 6.52 2.35 2.59 4.33 1734 2678 2940

TrAdaBoost.R2 (CV) 10.76 7.04 9.71 3.38 3.57 7.03 2.19 2.58 4.24 1815 2851 3527
2-Stage TrAdaBoost 8.74 6.49 8.66 2.99 3.12 6.12 2.14 2.52 4.21 1564 2555 3202

NN AdaBoost.R2 10.47 11.95 14.84 3.89 3.67 7.54 2.76 3.55 5.17 1593 3200 3836
best expert 10.12 9.67 13.87 7.00 4.99 9.22 2.66 2.77 4.43 1481 2484 6119
ExpBoost.R2 10.14 11.62 13.37 3.88 3.66 7.63 2.79 3.50 5.20 1392 3174 3829
boosted t. stacking 9.49 9.80 12.93 3.75 3.58 7.74 2.48 3.00 4.40 1215 2640 3761
transfer stacking 9.65 9.46 13.13 4.63 4.36 8.37 2.43 2.83 4.53 1144 2632 5081
best unif. init. wt. 10.48 8.02 10.77 3.89 3.00 6.46 2.44 2.80 4.19 1312 2277 2858

TrAdaBoost.R2 (CV) 11.34 9.05 11.91 4.02 3.29 7.68 2.33 2.80 4.37 1718 2573 3268
2-Stage TrAdaBoost 10.43 8.09 9.92 3.27 2.99 6.45 2.14 2.60 4.18 1290 2276 2843
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Figure 2. TAC SCM (M5P)
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Figure 3. TAC Travel (M5P)

final round of the 2006 competition. Each instance
consists of 31 features of the economy at some point
in time and is labeled with a particular change in fu-
ture computer prices. Full details of these data sets
are available in (Pardoe & Stone, 2007).

In TAC Travel, agents complete travel packages by bid-
ding in simultaneous auctions for flights, hotels, and
entertainment. We consider the problem of predicting
the closing prices of hotel auctions given the current
state of all auctions, represented by 51 features (as de-
scribed in (Schapire et al., 2002)). We use data from
the 2006 competition final round as the target data,
and data from the 2004 and 2005 final rounds as the
source data sets. (Between years the agents competing
changed significantly.)

Learning curves for 30 runs on each data set are shown
in Figures 2 and 3. M5P model trees were chosen as
the best base learner in both cases. Both two-stage
TrAdaBoost.R2 and boosted transfer stacking signif-
icantly outperform AdaBoost.R2 for any number of
target instances. Two-stage TrAdaBoost.R2 signifi-
cantly outperforms boosted transfer stacking for any
number of instances on the SCM data set and for 150
instances or less on the Travel data set.

7. Related Work

The most closely related work to this research, that
on boosting and classification transfer, is described in

Section 2. One important item we have not discussed,
as this paper is empirical in its focus, is the theoret-
ical properties of the algorithms discussed here. One
of the attractive features of AdaBoost is its theoreti-
cal guarantees (e.g., convergence to zero error on the
training set) (Freund & Schapire, 1997). We note that
no theoretical results currently exist for ExpBoost or
AdaBoost.R2; however, analogues of the main proper-
ties of AdaBoost have been proven to apply to TrAd-
aBoost, and a straightforward transformation of these
proofs shows that these properties also extend to the
combination of TrAdaBoost and AdaBoost.RT (men-
tioned in Section 2.3). Developing theoretical guaran-
tees for the other algorithms discussed here, in both
classification and regression settings, is an important
area for future work.

The lowest common denominator of transfer learning
methods is the leveraging of information from a source
domain to speed up or otherwise improve learning in
a different target domain. Transfer learning bears re-
semblance to classic case-based reasoning (Kolodner,
1993), especially in the need to reason about the sim-
ilarity between tasks and instances. More recently,
transfer learning has been studied in a variety of differ-
ent settings, including reinforcement learning (Taylor,
2009). A key property of the classification and our re-
gression setting is that the source and target domains
typically have the same input and output spaces (X
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and Y in our notation), which is not always the case,
for example in the reinforcement learning setting. As
such, the problem studied here could be considered
one of concept drift (Schlimmer & Granger, 1986),
in which the target concept changes over time. This
property also differentiates our setting from multitask
learning (Caruana, 1997), in which multiple related
concepts sharing an input representation but with po-
tentially unrelated outputs are to be learned simul-
taneously; however, some multitask learning methods
could potentially be modified to address our setting.

8. Conclusions and Future Work

We explored a number of boosting-based regression
transfer algorithms that make use of either models
trained on source data or the source data itself. The
primary contribution of this paper is the introduc-
tion of boosted transfer stacking and two-stage TrAd-
aBoost.R2, both of which have their roots in existing
classification transfer approaches. Both show promise,
and two-stage TrAdaBoost.R2 in particular was con-
sistently effective across a wide range of test domains.

There are a number of areas in which this work could
be expanded. So far, we have only experimented with
the domains and base learners described. Future work
is needed to better understand which transfer algo-
rithms are best suited for which domains, and how dif-
ferent choices of base learners and learning parameters
interact with these algorithms. Also, additional meth-
ods of adapting boosting for regression could be ex-
plored, and additional techniques for improving boost-
ing (such as regularization) could be tried. Finally, it
would be interesting to see whether the extensions to
ExpBoost and TrAdaBoost described here prove useful
in the classification setting for which those algorithms
were originally designed.
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