
OTL: A Framework of Online Transfer Learning

Peilin Zhao zhao0106@ntu.edu.sg

Steven C.H. Hoi chhoi@ntu.edu.sg

School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Abstract

In this paper, we investigate a new machine
learning framework called Online Transfer
Learning (OTL) that aims to transfer knowl-
edge from some source domain to an online
learning task on a target domain. We do not
assume the target data follows the same class
or generative distribution as the source data,
and our key motivation is to improve a su-
pervised online learning task in a target do-
main by exploiting the knowledge that had
been learned from large amount of training
data in source domains. OTL is in general
challenging since data in both domains not
only can be different in their class distribu-
tions but can be also different in their fea-
ture representations. As a first attempt to
this problem, we propose techniques to ad-
dress two kinds of OTL tasks: one is to per-
form OTL in a homogeneous domain, and
the other is to perform OTL across heteroge-
neous domains. We show the mistake bounds
of the proposed OTL algorithms, and empir-
ically examine their performance on several
challenging OTL tasks. Encouraging results
validate the efficacy of our techniques.

1. Introduction

Transfer learning (TL) has been actively studied re-
cently (Pan & Yang, 2009). It mainly aims to address
the machine learning tasks of building models in a
new target domain by taking advantage of information
from another existing source domain through knowl-
edge transfer. Transfer learning is important for many
applications where training data in a new domain may
be limited or too expensive to collect. Although trans-
fer learning has been actively explored, most existing
work on transfer learning were often studied in an of-
fline learning fashion, which has to assume training
data in the new domain is given a priori. Such an
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assumption may not always hold for some real appli-
cations where training examples may arrive in an on-
line/sequential manner.

Unlike the existing transfer learning studies, in this pa-
per, we propose a new framework of Online Transfer

Learning (OTL), which addresses the transfer learn-
ing problem using an online learning framework. As
the first attempt to this problem, we address some
OTL challenges in two different settings. In the first
setting, we study the homogeneous OTL where the
target domain shares the same feature space as the
old/source one. In the second setting, we address
the challenge of heterogeneous OTL where the feature
space of the target domain is different from that of
the source domain. We propose algorithms to solve
both problems, and theoretically analyze their mistake
bounds. Finally, we empirically examine their perfor-
mance on several challenging OTL tasks.

The rest of this paper is organized as follows. Section
2 reviews related work. Section 3 presents the pro-
posed framework. Section 4 and Section 5 address the
homogeneous and heterogeneous OTL tasks, respec-
tively. Section 6 gives our experimental results and
Section 7 concludes this work.

2. Related Work
Our work is generally related to two machine learning
topics: online learning and transfer learning. Below
we review some important related work in both areas.

Online learning has been extensively studied for
years (Rosenblatt, 1958; Crammer et al., 2006;
Zhao et al., 2009; Yang et al., 2010). Unlike typical
machine learning methods that assume training
examples are available before the learning task, online
learning is more appropriate for some real-world
problems where training data arrive sequentially. Due
to their merits of attractive efficiency and scalability,
various online learning methods have been proposed.
One well-known approach is the Perceptron algo-
rithm (Rosenblatt, 1958; Freund & Schapire, 1999),
which updates the model by adding a new example
with some constant weight into the current set of
support vectors when the example is misclassified.
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Recently many online learning algorithms have
been proposed based on the criterion of maximum
margin (Crammer et al., 2006; Li & Long, 1999;
Zhao et al., 2009). One example is the Passive-
Aggressive (PA) method (Crammer et al., 2006),
which updates the classification model when a new
example is misclassified or its classification score
is smaller than some predefined margin. More
extensive surveys for online learning can be found
in (Shalev-Shwartz, 2007).

Transfer learning (TL) has been actively studied. The
goal of TL is to extract knowledge from one or more
source tasks and then apply them to a target task.
Various TL methods have been proposed. Accord-
ing to different learning types, these methods can
be roughly classified into three categories: induc-
tive, transductive, and unsupervised approaches. In-
ductive TL (DaumáIII & Marcu, 2006) aims to in-
duce the model in the target domain with the aid of
knowledge transferred from the source domains; trans-
ductive TL (Arnold et al., 2007) aims to extract the
knowledge from source domain to improve the predic-
tion tasks in the target domain without labeled data
in the target domain; while unsupervised TL aims
to resolve unsupervised learning tasks in target do-
main (Dai et al., 2008). Moreover, according to dif-
ferent feature representation, TL can be classified as
homogeneous vs. heterogeneous TL (Argyriou et al.,
2008) where the feature spaces of source and target
domains can be different. A comprehensive survey on
transfer learning can be found in (Pan & Yang, 2009).

Although both online learning and transfer learning
have been actively studied, to the best of our knowl-
edge, no existing work has formally addressed transfer
learning by an online learning framework. Finally, we
note that OTL is also different from online multi-task
learning (Dekel et al., 2007), which aims to learn mul-
tiple tasks in parallel in an online learning framework.

3. Problem Formulation

Let us denote by X1 × Y1 the source/old data space,
where X1 = R

m and Y1 = {−1,+1}. Since our task
aims to learn a kernel classifier, we thus denote by
κ1(·, ·) : R

m ×R
m → R the kernel function to be used

in the source classifier. Assume that a source classifier
h(x) can be represented as:

h(x) =

S
∑

s=1

αsy1sκ1(x1s , x)

where {(x1s , y1s) ∈ X1×Y1|s = 1, . . . S} are the set of
support vectors for the source training data set, and
αs are the coefficients of support vectors. Typically
the source classifier h(x) can be obtained by apply-
ing existing learning techniques, such as online learn-

ing via the Perceptron algorithm (Rosenblatt, 1958;
Freund & Schapire, 1999) or regular learning by sup-
port vector machines (SVM).

For an online transfer learning (OTL) task, our goal
is to online learn some prediction function f ∈ Hκ

on a target domain from a sequence of examples
{(x2t , y2t)|t = 1, . . . , T } in some data space X2 × Y2.

Specifically, during the OTL task, at the t-th trial of
online learning task, the learner receives an instance
x2t , and the goal of online learning is to find a good
prediction function such that the predicted class la-
bel sign(ft(x2t)) can match its truth class label y2t .
The key challenge of OTL is how to effectively trans-
fer the knowledge from the old/source domain to the
new/target domain for improving the online learning
performance. Next, we study OTL in two different
settings: homogeneous vs. heterogeneous OTL.

4. Online Transfer Learning over

Homogeneous Domains

We start by studying the homogeneous OTL, in which
we assume the source domain and the target do-
main have the same feature space, i.e., X2 = X1 and
Y2 = Y1. One key challenge of this task is to address
the concept drifting issue that often occurs in this sce-
nario. Specifically, the concept drift means that the
target variable to be predicted changes over time in the
learning process. This raises the challenge of transfer-
ring knowledge from source domain to target domain.

The basic idea of our OTL solution is based on the
ensemble learning approach. In particular, we first
construct an entirely new prediction function f only
from the data in the target domain in an online fash-
ion, and then learn an ensemble prediction function
that is the mixture of both the old and the new pre-
diction functions, i.e., h and f , which thus can transfer
the knowledge from the source domain. The remaining
issue is then how to effectively combine the two pre-
diction functions for handling the concept drift issue.

To combine the two prediction functions h(x) and
ft(x) at the t-trial of the online learning task, we in-
troduce two weight parameters, w1,t and w2,t, for the
two prediction functions respectively. At the t-th step,
given an instance x2t , we predict its class label by the
following ensemble function:

ŷ2t = sign
(

w1,tΠ(h(x2t)) + w2,tΠ(ft(x2t))−
1

2

)

(1)

where Π(x) is a normalization function, i.e., Π(x) =
max(0,min(1, x+1

2 )). At the beginning of the OTL
task, we simply set w1,1 = w2,1 = 1

2 . In order to
effectively transfer, for the subsequent trials of the
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Algorithm 1: Online Transfer Learning algorithm (OTL)

Input: the old classifier h(x) =
∑S

s=1 αsy1sκ1(x1s , x) and
initial trade off C and weights w1,1 = w2,1 = 1

2
1: Initialize f1 = 0
2: for t = 1, 2, . . . , T do
3: receive instance: x2t ∈ X2

4: predict ŷ2t by Eq. 1
5: receive correct label: y2t ∈ {−1,+1}
6: compute w1,t+1 and w2,t+1 by Eq. (2) and (3)
7: suffer loss: ℓt = [1− y2tft(x2t)]+
8: if ℓt > 0 then
9: τt = min{C, ℓt/κ2(x2t , x2t)}
10: ft+1 = ft + τty2tκ2(x2t , ·)
11: end if
12: end for

Figure 1. The Online Transfer Learning (OTL) algorithm.

OTL task, in addition to updating the function ft+1(x)
by some online learning methods, e.g. the PA al-
gorithm (Crammer et al., 2006), we expect the two
weights of both prediction functions, i.e., w1,t and w2,t,
can be adjusted dynamically. We suggest the following
updating scheme for adjusting the weights:

w1,t+1 =
w1,t ∗ st(h)

w1,t ∗ st(h) + w2,t ∗ st(ft)
(2)

w2,t+1 =
w2,t ∗ st(ft)

w1,t ∗ st(h) + w2,t ∗ st(ft)
(3)

where st(g) = exp{−ηℓ∗(Π(g(x2t)),Π(y2t))}, ∀g ∈
Hκ and ℓ∗(z, y) is a loss function which is set to
ℓ∗(z, y) = (z − y)2 in our approach. Finally, Figure
1 summarizes the proposed OTL algorithm.

Next we analyze the mistake bound of the algorithm.
We first introduce the following proposition.

Proposition 1. When using the square loss ℓ∗(z, y) =
(z − y)2 for z ∈ [0, 1] and y ∈ {0, 1} and the above
exponentially weighting update method and setting η =
1/2, we have the bound of the ensemble algorithm as:
T
∑

t=1

ℓ∗(w1,tΠ(h(x2t)) + w2,tΠ(ft(x2t)),Π(y2t)) ≤ 2 ln 2 +

min
{

T
∑

t=1

ℓ∗(Π(h(x2t)),Π(y2t)),
T
∑

t=1

ℓ∗(Π(ft(x2t)),Π(y2t))
}

The proposition can be proved by following the
similar technique described at Section 3.3 of the
book (Cesa-Bianchi & Lugosi, 2006). By Proposi-
tion 1, we derive the mistake bound of the OTL al-
gorithm as follows.

Theorem 1. Let us denote by M the number of mis-
takes made by the OTL algorithm, we then have M
bounded from above by:

M ≤ 4min
{

Σh,Σf

}

+ 8 ln 2 (4)

where Σh =
∑T

t=1 ℓ
∗(Π(h(x2t)),Π(y2t)) and Σf =

∑T

t=1 ℓ
∗(Π(ft(x2t)),Π(y2t)).

The proof of Theorem 1 is given in the appendix.

Remark. To better understand the mistake bound,
we denote by Mh and Mf the mistake bound of
model h and ft, respectively. First, we note that
ℓ∗(Π(h(x2t)),Π(y2t)) is the upper bound of 1

4Mh in-
stead of Mh (because ℓ is a square loss and both
Π(h(x2t)) and Π(y2t) are normalized to [0, 1]); sim-
ilarly, ℓ∗(Π(ft(x2t)),Π(y2t)) is the upper bound of
1
4Mf . Further, if we assume ℓ∗(Π(h(x2t)),Π(y2t)) ≈
1
4Mh and ℓ∗(Π(ft(x2t)),Π(y2t)) ≈ 1

4Mf , we have the
result: M ≤ min{Mh,Mf}+8 ln2. This gives a strong
theoretical support for the OTL algorithm.

5. Online Transfer Learning over

Heterogeneous Domains

In this section, we study the OTL problem across het-
erogeneous domains where the source and target do-
mains have different feature spaces.

Heterogeneous OTL is generally very challenging. To
simplify the problem, we assume the feature space of
the source domain is a subset of that of the target do-
main. Due to the difference of the two feature spaces,
we cannot directly apply the algorithm in the previous
section. Below we propose to introduce a multi-view
approach for solving the challenge in this case.

Formally, we denote the data on the target domain as:
{(x2t , y2t)|t = 1, . . . , T }, where x2t ∈ X2 = R

n ⊃ R
m

and y2t ∈ {−1,+1}. Without loss of generality, we
assume the first m dimensions of X2 represent the old
feature space X1. In the multi-view setting, we split

each data instance x2t into two instances x
(1)
2t

∈ X1

and x
(2)
2t

∈ X2/X1. For the second view, we introduce
a new kernel function κ2(·, ·) : R

n−m × R
n−m → R.

The key idea of our heterogeneous OTL method is to
adopt a co-regularization principle of online learning

two classifiers f
(1)
t and f

(2)
t simultaneously from the

two views, and predict an unseen example on the tar-

get domain by ŷt = sign
(

1
2

(

f
(1)
t (x

(1)
2t

) + f
(2)
t (x

(2)
2t

)
)

)

.

For the specific algorithm, we initialize the classifier for

the first view by setting f
(1)
1 = h, and setting f

(2)
1 = 0

for the second view. For a new example in the online

learning task, we update the new functions f
(1)
t+1 and

f
(2)
t+1 by the following co-regularization optimization:

(f
(1)
t+1, f

(2)
t+1) = arg min

f(1)∈Hκ1f(2)∈Hκ2

γ1
2
‖f (1) − f

(1)
t ‖2Hκ1

+
γ2
2
‖f (2) − f

(2)
t ‖2Hκ2

+ Cℓt (5)

where γ1, γ2 and C are positive parameters, and the
loss term ℓt is defined below:

ℓt = [1− y2t
1

2
(f (1)(x

(1)
2t

) + f (2)(x
(2)
2t

))]+ (6)
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Algorithm 2: The Co-Regularized Online Transfer Learn-
ing Algorithm (COTL)

Input: the old classifier h(x) =
∑S

s=1 αsy1sκ1(x1s , x) and
parameters γ1, γ2 and C

1: Initialize f
(1)
1 = h and f

(2)
1 = 0

2: for t = 1, 2, . . . , T do
3: receive instance: x2t ∈ X2

4: predict: ŷt = sign
(

1
2

(

f
(1)
t (x

(1)
2t

) + f
(2)
t (x

(2)
2t

)
)

)

5: receive correct label: y2t ∈ {−1,+1}
6: suffer loss:

ℓt =
[

1− y2t

(

1
2

(

f
(1)
t (x

(1)
2t

) + f
(2)
t (x

(2)
2t

)
)

) ]

+

7: if ℓt > 0 then
8: τt = min{C, 4γ1γ2ℓt

k1
t
γ2+k2

t
γ1

}

9: f
(1)
t+1 = f

(1)
t + τt

2γ1
y2tκ1(x

(1)
2t

, ·)

10: f
(2)
t+1 = f

(2)
t + τt

2γ2
y2tκ2(x

(2)
2t

, ·)

11: end if
12: end for

Figure 2. The Co-regularized Online Transfer Learning.

Intuitively, the above updating method aims to make
the updated ensemble classifier be able to classify the
new observed example (x2t , y2t) correctly, and to force
the two-view classifiers without deviating too much

from the previous classifiers (f
(1)
t , f

(2)
t ) via the first

two regularization terms.

The above optimization enjoys a closed-form solution
as shown in Proposition 2. To simplify our discussion,

we introduce notation k1t = κ1(x
(1)
2t

, x
(1)
2t

) and k2t =

κ2(x
(2)
2t

, x
(2)
2t

).

Proposition 2. For the optimization problem (5), its
solution can be expressed as follows:

f
(i)
t+1 = f

(i)
t +

τt
2γi

κi(x
(i)
2t
, ·) i = 1, 2 (7)

where τt = min{C, 4γ1γ2ℓt
k1
t
γ2+k2

t
γ1
}.

The proof of the proposition is given in the appendix.

By this proposition, we summarize the proposed “Co-
regularized Online Transfer Learning” (COTL) algo-
rithm in Figure 2.

Before we prove the mistake bound for the COTL al-
gorithm, we first introduce a lemma.

Lemma 1. Let (x2t , y2t), t = 1, . . . , T be a sequence
of examples, where x2t ∈ R

n and y2t ∈ {−1,+1} for
all t. After we split the instance x2t into two views

(x
(1)
2t

, x
(2)
2t

), for any g(1) ∈ Hκ1 and g(2) ∈ Hκ2 , we
have the following bound:

T
∑

t=1

τt

(

ℓt − ℓ(g(1), g(2); t)− (
k1
t

8γ1
+

k2
t

8γ2
)τt

)

≤
γ1
2
‖h− g(1)‖2 +

γ2
2
‖g(2)‖2 (8)

where ℓt is given in Eqn. (6) and ℓ is defined as:

ℓ(g(1), g(2); t) = [1− y2t
1
2 (g

(1)(x
(1)
2t

) + g(2)(x
(2)
2t

))]+ .

The proof of the Lemma is given in the appendix. Us-
ing Lemma 1, we can show the following theorem for
the mistake bound of the proposed COTL algorithm.

Theorem 2. Let (x2t , y2t), t = 1, . . . , T be a sequence
of examples, where x2t ∈ R

n and y2t ∈ {−1,+1}
for all t. In addition k1t ≤ R1 and k2t ≤ R2 t =
1, . . . , T . And we split the instance x2t into two views

(x
(1)
2t

, x
(2)
2t

). Then for any g(1) ∈ Hκ1 and g(2) ∈ Hκ2 ,
the number of mistakes M made by the proposed COTL
algorithm is bounded from above by:

M ≤
1

τ

(

γ1‖h− g(1)‖2 + γ2‖g
(2)‖2 + 2C

T
∑

t=1

ℓ(g(1), g(2); t)
)

where τ = min{C, 4γ1γ2

R1γ2+R2γ1
}.

Proof. Since τt = min{C, 4γ1γ2ℓt
k1
t
γ2+k2

t
γ1
} ≤ C,

τtℓ(g
(1), g(2); t) ≤ Cℓ(g(1), g(2); t). In addition, τt =

min{C, 4γ1γ2ℓt
k1
t
γ2+k2

t
γ1
} ≤ 4γ1γ2ℓt

k1
t
γ2+k2

t
γ1
, we thus have

T
∑

t=1

τt

(

ℓt − ℓ(g(1), g(2); t)− (
k1
t

8γ1
+

k2
t

8γ2
)τt

)

=

T
∑

t=1

τtℓt −

T
∑

t=1

τtℓ(g
(1), g(2); t)−

T
∑

t=1

(
k1
t

8γ1
+

k2
t

8γ2
)τ 2

t

≥
T
∑

t=1

τtℓt−
T
∑

t=1

Cℓ(g(1), g(2); t)−
T
∑

t=1

(
k1
t

8γ1
+

k2
t

8γ2
)τt

4γ1γ2ℓt
k1
t γ2 + k2

t γ1

=

T
∑

t=1

τtℓt − C

T
∑

t=1

ℓ(g(1), g(2); t)−
1

2

T
∑

t=1

τtℓt

=
1

2

T
∑

t=1

τtℓt − C
T
∑

t=1

ℓ(g(1), g(2); t)

Combining the above inequality with the conclusion
of Lemma 1, we have

1

2

T
∑

t=1

τtℓt ≤
γ1
2
‖h− g(1)‖2+

γ2
2
‖g(2)‖2+C

T
∑

t=1

ℓ(g(1), g(2); t)

Furthermore, when a mistake occurs, ℓt ≥ 1; thus
τtℓt = min{C, 4γ1γ2ℓt

k1
t
γ2+k2

t
γ1
} ∗ ℓt ≥ min{C, 4γ1γ2ℓt

k1
t
γ2+k2

t
γ1
} ≥

min{C, 4γ1γ2

R1γ2+R2γ1
} = τ . Combining this observation

with the inequality above, we have

1

2
M × τ ≤

γ1
2
‖h− g(1)‖2 +

γ2
2
‖g(2)‖2 + C

T
∑

t=1

ℓ(g(1), g(2); t)

The theorem follows directly by multiplying 2/τ on
both sides of the above inequality.
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6. Experimental Results
In this section, we evaluate the empirical performance
of the proposed two kinds of OTL algorithms.

6.1. Experimental Testbed and Setup for

Homogeneous OTL

Our first experiment is to evaluate the performance
of OTL from homogeneous data. We compare our
OTL technique against other popular online learn-
ing techniques, including the Passive-Aggressive algo-
rithms(“PA”) (Crammer et al., 2006) without exploit-
ing any knowledge from the source domain, and a vari-
ant of it, which is the PA method Initialized with the
Old classifier h, denoted as PAIO for short. For our
OTL technique, in addition to Algorithm 1, we also
implement another variant, which is implemented by
fixing the ensemble weights of the OTL algorithm to
1/2, denoted “OTL(fixed)” for short. This helps us
to examine if the proposed weighting strategy is effec-
tive. For the PA methods, the original algorithm was
proposed for learning linear models (Crammer et al.,
2006). In our experiments, we adapted all the algo-
rithms to the kernel settings.

To extensively examine the performance, we test all
the algorithms on some benchmark machine learn-
ing datasets, including dataset “w7a”, a dataset with-
out concept drifting, and “usenet2”, a dataset with
concept-drifting, which can be downloaded 1. Besides,
we also create another concept-drifting dataset named
“newsgroup4” based on the dataset “newsgroup20”
downloaded from the LIBSVM web site 2. The details
of the “newsgroup4” is shown in Table 1. For an OTL

Table 1. The class distribution of dataset newsgroup4.
example id 0-400 401-800 801-1200 1201-1600

comp.windows.x + - - +
rec.sport.hockey + + - -
sci.space - + + -
talk.politics.mideast - - + +

experiment, we must split the whole dataset into two
parts: (1) training data for the source domain, and (2)
test data for online learning in the target domain. For
the two concept-drifting datasets, we split each of them
into two parts according to their sequential orders:
“usenet2”(300+1200) and “newsgroup4”(400+1200);
for “w7a” without concept drifting, we randomly split
it into two parts: (10000+14692), and repeat it 20
times. Finally, we adopt the (kernel) PA algorithm to
build the baseline classifier in the source domain.

All the algorithms employ a gaussian kernel. For
fair comparison and simplicity, we set σ1 = 4 and
σ2 = 8 for all the datasets and algorithms. In ad-
dition, parameter C is set to 5 for all algorithms on

1http://mlkd.csd.auth.gr/concept_drift.html
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

every dataset. We evaluate the performance of online
learning methods by measuring the standard mistake
rate. Also we evaluate the total number of support
vectors to examine the sparsity of the resulting clas-
sifiers. Finally, we measure the average time cost for
comparing the efficiency of the algorithms.

6.2. Evaluation of Homogeneous OTL Tasks

Table 2 summarizes the performance of the compared
algorithms on the three datasets.

Table 2. Results on the datasets of homogeneous domain.

Algorithm w7a (n=24692, d=300)
Mistake (%) Support Vectors (#) Time (s)

PA 2.86 %± 0.05 1639.95 ± 23.96 0.96
PAIO 2.34 %± 0.06 2556.20 ± 30.95 1.82
OTL(fixed) 2.22 %± 0.05 3045.75 ± 33.99 2.22
OTL 1.87 %± 0.01 3045.75 ± 33.99 2.37

Algorithm usenet2 (n=1500, d=99)
Mistake (%) Support Vectors (#) Time (s)

PA 49.33 %± 0 949 ± 0 0.04
PAIO 47.92 %± 0 1116 ± 0 0.04
OTL(fixed) 42.67 %± 0 1203 ± 0 0.05
OTL 34.42 %± 0 1203 ± 0 0.07

Algorithm newsgroup4 (n=1600, d=62062)
Mistake (%) Support Vectors (#) Time (s)

PA 42.50 %± 0 1188 ± 0 0.04
PAIO 51.75 %± 0 1585 ± 0 0.05
OTL(fixed) 38.83 %± 0 1536 ± 0 0.06
OTL 37.58 %± 0 1536 ± 0 0.08

Several observations can be drawn from the experi-
mental results. First of all, for the “w7a” dataset
without concept drifting, we found that all three al-
gorithms outperform the baseline algorithm (PA), in
which the proposed OTL algorithm achieved the best
performance among all. Further, on the two concept-
drifting datasets, we found that the performances of
the compared algorithms are quite different. For
PAIO, it can only improve the mistake rate slightly
on the “usenet2”, but failed to improve over the base-
line on the dataset “newsgroup4”. For the two OTL
algorithms, both can improve the mistake rates on
both datasets, in which OTL is more effective than
OTL(fixed) which uses a fixed combination weights.
These experimental results show that without careful
consideration, OTL may suffer from negative transfer
when facing a serious concept drifting problem.

Finally, Figure 3 shows the details of average mistake
rates varying over the OTL processes on the three
data sets, respectively. Similar to the previous results,
the proposed OTL algorithm achieved the best results
among all datasets. In particular, on the newsgroup4
dataset, we found that all the three algorithms suffer
from the concept-drifting event at the very beginning
of the OTL process; however, the proposed OTL algo-
rithm is able to rapidly improve its performance when
receiving more examples, while PAIO failed to improve
since it depends too much on the knowledge inherited
from the source domain. This again verifies the effi-
cacy of the proposed method.

http://mlkd.csd.auth.gr/concept_drift.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
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Figure 3. Experimental results of average mistake rates on the homogeneous OTL tasks.

6.3. Experimental Testbed and Setup for

Heterogenous OTL

In this section, we evaluate the empirical performance
of the proposed Co-regularized Online Transfer Learn-
ing (COTL) algorithm for heterogenous OTL tasks.
We compare our COTL technique with the PA al-
gorithm, which does not exploit knowledge from the
source domain. Similarly, we implement a variant of
PA algorithm that uses only the first view of the data
and is initialized with h from the source domain, de-
noted as “PAIO”. We also implement a variant of
COTL, whose first view classifier is initialized with
zero function, denoted as ”COTL0”. This method en-
ables us to examine the importance of engaging the
h function learned from the source domain. Finally,
we implement another baseline algorithm that simply
combines the above PAIO classifier of the first view
and the PA classifier learned from the second view on
the target domain, denoted as “SCT” for short.

To extensively examine the performance, we test all
the algorithms on several benchmark datasets from
machine learning repositories, including “a7a”, “ger-
man”, “mushrooms”, “spambase” and “w7a”. These
datasets can be downloaded from LIBSVM website.

Table 3. Summary of data sets used for OTL tasks.

Datasets source/old domain target/new domain

Number Dimension Number Dimension

a7a 6100 61 10000 123

mushrooms 3000 56 5124 112

spambase 2000 28 2601 57

w7a 10000 150 14692 300

For each dataset, we randomly split it into two parts:
source versus target, as shown in Table 3. In the parti-
tion, to meet the setup of the heterogenous OTL task,
the source-domain data associate with only the first
half of the feature space while the target-domain data
include the whole feature space.

All the algorithms in comparison employ a gaussian
kernel. For fair comparison and simplicity, for all the
datasets and algorithms, we set γ1 = γ2 = 1 and
σ1 = σ2 = 4 for the two views, and σ = 8 for the
whole feature. In addition, parameter C is set to 5 for

all the algorithms on every dataset. We conducted 20
different random permutations to obtain the average
results. We evaluate the performance of online learn-
ing methods by calculating the mistake rates. We also
evaluate the total number of support vectors to exam-
ine the sparsity of the resulting classifiers. Finally, we
evaluate the time cost of the compared algorithms.

6.4. Evaluation of Heterogenous OTL Tasks

Table 4 summarizes the performance of all the algo-
rithms for heterogenous OTL on the four datasets.

Table 4. Results on the datasets of heterogenous domain.

Algorithm a7a
Mistake (%) Support Vectors (#) Time (s)

PA 22.08 %± 0.34 4266.05 ± 47.10 1.49

PAIO 22.60 %± 0.31 7115.00 ± 33.15 3.55

COTL0 21.62 %± 0.29 8403.20 ± 86.34 3.25

SCT 26.06 %± 0.36 11842.20 ± 56.15 6.16

COTL 21.32 %± 0.27 11063.30 ± 87.58 5.71

Algorithm mushrooms
Mistake (%) Support Vectors (#) Time (s)

PA 2.56 %± 0.11 944.30 ± 17.93 0.23

PAIO 0.66 %± 0.07 865.75 ± 10.94 0.24

COTL0 1.10 %± 0.09 1450.30 ± 36.68 0.36

SCT 1.10 %± 0.10 2198.35 ± 26.22 0.53

COTL 0.38 %± 0.04 1779.90 ± 34.63 0.47

Algorithm spambase
Mistake (%) Support Vectors (#) Time (s)

PA 25.04 %± 0.66 1761.30 ± 16.40 0.17

PAIO 14.41 %± 0.57 1742.65 ± 13.46 0.21

COTL0 12.78 %± 0.34 2399.30 ± 24.97 0.25

SCT 12.71 %± 0.40 3667.30 ± 23.89 0.40

COTL 11.17 %± 0.43 2993.10 ± 27.49 0.34

Algorithm w7a
Mistake (%) Support Vectors (#) Time (s)

PA 3.85 %± 0.08 1780.60 ± 23.28 0.96

PAIO 3.53 %± 0.05 2774.45 ± 32.96 1.91

COTL0 3.34 %± 0.07 3432.00 ± 43.78 1.89

SCT 3.22 %± 0.06 4427.85 ± 39.33 3.03

COTL 3.04 %± 0.06 4480.50 ± 57.85 3.08

Several observations can be drawn from the results.
First of all, we found that among all the algorithms,
the PA algorithm without exploiting knowledge from
source domain achieved the highest mistake rate in
most cases. This shows that it is important for study-
ing knowledge transfer in an OTL task. Second, for all
the datasets, we found that the COTL algorithm has
the smallest mistake rate. This validates the proposed
OTL technique is effective for knowledge transfer in
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the online learning tasks. Of course, there is some
cost of knowledge transfer for the gain. By examin-
ing the number of support vectors and the running
time cost, we found that the COTL techniques usu-
ally produce denser classifiers and spend more time.
This is unavoidable as the COTL algorithm makes use
of the old classifier from the source domain. Finally,
Figure 4 shows the details of the COTL processes on
the four data sets, respectively. Similar observations
can be found from the results, which again verify the
proposed OTL method is effective and promising.

7. Conclusion
In this paper, we studied the new problem of Online

Transfer Learning (OTL), which aims to transfer
knowledge from a source domain to an online learning
task on a target domain. We addressed two OTL tasks
in different settings and presented two novel OTL algo-
rithms. We offered theoretical analysis on the mistake
bounds of the proposed OTL algorithms, and exten-
sively examined their empirical performance. Encour-
aging results show the proposed algorithms are effec-
tive. Through this work, we hope to encourage the in-
vestigation of OTL to address other harder problems,
e.g. how to perform heterogeneous OTL from complex
data of completely diverse feature representations.

Appendix

Proof of Theorem 1
Proof. First notice that whenever there is a mistake
at some t-th step, we should have |w1,tΠ(h(x2t)) +
w2,tΠ(ft(x2t))−Π(y2t)| ≥

1
2 . Thus, we haves

T
∑

t=1

ℓ∗
(

w1,tΠ(h(x2t)) + w2,tΠ(ft(x2t)),Π(y2t)
)

=
T
∑

t=1

(

w1,tΠ(h(x2t)) + w2,tΠ(ft(x2t))− Π(y2t)
)2

≥
1

4
M

Combining the above fact with Proposition 1, we have

1

4
M ≤ min

{

Σh,Σf

}

+ 2 ln 2

where Σh =
∑T

t=1 ℓ
∗(Π(h(x2t)),Π(y2t)) and Σf =

∑T
t=1 ℓ

∗(Π(ft(x2t)),Π(y2t)). The theorem follows di-
rectly by multiplying 4 at both sides of the above in-
equality.

Proof of Proposition 2

Proof. It is easy to see that the optimization prob-
lem (5) is equivalent to the following problem

min
f(1)∈Hκ1f

(2)∈Hκ2

γ1
2
‖f (1)−f

(1)
t ‖2Hκ1

+
γ2
2
‖f (2)−f

(2)
t ‖2Hκ2

+Cξ

s.t. 1− y2t
1

2

(

f (1)(x
(1)
2t

) + f (2)(x
(2)
2t

)
)

≤ ξ and ξ ≥ 0

The Lagrangian of the above optimization is:

L(f (1), f (2), ξ, τt, λ)

=
γ1
2
‖f (1) − f

(1)
t ‖2Hκ1

+
γ2
2
‖f (2) − f

(2)
t ‖2Hκ2

+Cξ

+τt

(

1− y2t
1

2

(

f (1)(x
(1)
2t

) + f (2)(x
(2)
2t

)
)

− ξ

)

− λξ

=
γ1
2
‖f (1) − f

(1)
t ‖2Hκ1

+
γ2
2
‖f (2) − f

(2)
t ‖2Hκ2

+ ξ(C

−τt − λ) + τt

(

1− y2t
1

2

(

f (1)(x
(1)
2t

) + f (2)(x
(2)
2t

)
)

)

(9)

where τt ≥ 0 and λ ≥ 0 are Lagrange multipliers. We
now find the minimum of the Lagrangian with respect
to f (1), f (2) and ξ by setting their partial derivatives to

zeros. We get f (i) = f
(i)
t + τt

2γi

y2tκi(x
(i)
2t
, ·) for i = 1, 2

and C − τt − λ = 0. And since λ ≥ 0, we conclude
C ≥ τt. We thus have τt ∈ [0, C].

Plugging the three equations f (i) = f
(i)
t +

τt
2γi

y2tκi(x
(i)
2t
, ·) (where i = 1, 2) and C − τt − λ = 0

into Eq. (9), we have

L(τt) = −τ 2
t (

k1
t

8γ1
+

k2
t

8γ2
) + τtℓt

By setting the partial derivative of the above equation
to zero, we have

τt = ℓt/(
k1
t

4γ1
+

k2
t

4γ2
) =

4γ1γ2ℓt
k1
t γ2 + k2

t γ1

Finally, combining the result τt ∈ [0, C], we thus have
the solution: τt = min{C, 4γ1γ2ℓt

k1
t
γ2+k2

t
γ1
} .

Proof of Lemma 1

Proof. Let ∆t =
γ1

2

(

‖f
(1)
t − g(1)‖2 − ‖f

(1)
t+1 − g(1)‖2

)

+

γ2

2

(

‖f
(2)
t − g(2)‖2 − ‖f

(2)
t+1 − g(2)‖2

)

, then

T
∑

t=1

∆t =
T
∑

t=1

{γ1
2

(

‖f
(1)
t − g(1)‖2 − ‖f

(1)
t+1 − g(1)‖2

)

+
γ2
2

(

‖f
(2)
t − g(2)‖2 − ‖f

(2)
t+1 − g(2)‖2

)}

=
γ1
2

(

‖h− g(1)‖2 − ‖f
(1)
T+1 − g(1)‖2

)

+
γ2
2

(

‖f
(2)
1 − g(2)‖2 − ‖f

(2)
T+1 − g(2)‖2

)

≤
γ1
2

(

‖h− g(1)‖2
)

+
γ2
2

(

‖g(2)‖2
)

Second, when ℓt = 0, f
(i)
t+1 = f

(i)
t for i = 1, 2, it is clear

∆t = 0; when ℓt > 0, f
(i)
t+1 = f

(i)
t + τt

2γi

y2tκi(x
(i)
2t
, ·), we

compute ∆t as:

∆t =
γ1
2

(

‖f
(1)
t − g(1)‖2 − ‖f

(1)
t+1 − g(1)‖2

)

+
γ2
2

(

‖f
(2)
t − g(2)‖2 − ‖f

(2)
t+1 − g(2)‖2

)

= τt
{

−
y2t
2

(

f
(1)
t (x

(1)
2t

) + f
(2)
t (x

(2)
2t

)
)

+
y2t
2

(

g(1)(x
(1)
2t

)+g(2)(x
(2)
2t

)
)

−(
k1
t

8γ1
+

k2
t

8γ2
)τt
}

(10)
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Figure 4. Experimental results of average mistake rates on the heterogenous OTL tasks.

We also have ℓt = 1− y2t

(

1
2

(

f
(1)
t (x

(1)
2t

) + f
(2)
t (x

(2)
2t

)
)

)

since ℓt > 0. This is equivalent to the following:
y2t
2

(

f
(1)
t (x

(1)
2t

) + f
(2)
t (x

(2)
2t

)
)

= 1− ℓt.

In addition,

ℓ(g(1), g(2); t) =

[

1− y2t
1

2

(

g(1)(x
(1)
2t

) + g(2)(x
(2)
2t

)
)

]

+

≥ 1− y2t
1

2

(

g(1)(x
(1)
2t

) + g(2)(x
(2)
2t

)
)

,

we thus have
y2t
2

(

g(1)(x
(1)
2t

) + g(2)(x
(2)
2t

)
)

≥ 1− ℓ(g(1), g(2); (x2t , y2t)).

Combining these two facts and inequality (10), we
thus have the following result:

∆t ≥ τt

(

−(1−ℓt)+ 1−ℓ(g(1), g(2); (x2t , y2t))−(
k1
t

8γ1
+

k2
t

8γ2
)τt

)

= τt

(

ℓt − ℓ(g(1), g(2); (x2t , y2t))− (
k1
t

8γ1
+

k2
t

8γ2
)τt

)

Hence, we have the following conclusion:

T
∑

t=1

τt

(

ℓt − ℓ(g(1), g(2); (x2t , y2t))− (
k1
t

8γ1
+

k2
t

8γ2
)τt

)

≤
γ1
2
‖h− g(1)‖2 +

γ2
2
‖g(2)‖2
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