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Abstract

We consider the problem of learning from
noisy side information in the form of pairwise
constraints. Although many algorithms have
been developed to learn from side informa-
tion, most of them assume perfect pairwise
constraints. Given the pairwise constraints
are often extracted from data sources such
as paper citations, they tend to be noisy and
inaccurate. In this paper, we introduce the
generalization of maximum entropy model
and propose a framework for learning from
noisy side information based on the general-
ized maximum entropy model. The theoretic
analysis shows that under certain assump-
tion, the classification model trained from the
noisy side information can be very close to
the one trained from the perfect side informa-
tion. Extensive empirical studies verify the
effectiveness of the proposed framework.

1. Introduction

Learning from side information has been studied
extensively and has found its application in dis-
tance metric learning (Xing et al., 2003), constrained
clustering (Basu et al., 2004b), and kernel learn-
ing (Hoi et al., 2007). The side information is usually
cast in the form of pairwise constraints, including the
pairs in the same class, called the positive (pairwise)
constraints, and the pairs in different classes, called
the negative (pairwise) constraints. The side informa-
tion can often be derived from data, making it more
attractive than the standard setup of supervised learn-
ing. For instance, in classifying research articles, we
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can derive the pairwise constraints based on the cita-
tions between papers.

Although various algorithms have been proposed for
learning from side information, most of them assume
perfect side information. In contrast, in this study, we
focus on the problem of learning from noisy side

information in which some of the pairwise constraints
are labeled incorrectly. This is important because the
pairwise constraints extracted from data tend to be
noisy and inaccurate. In the example of classifying
research articles with pairwise constraints constructed
from paper citations, the cited paper may not share
the same research topic as the citing paper.

In order to handle the noisy side information, we in-
troduce the generalization of maximum entropy model
and propose a framework for learning from noisy side
information based on the generalized maximum en-
tropy model. We show that under certain assump-
tions, the conditional probabilistic model trained from
the noisy side information converges to that trained
from the perfect side information. Extensive exper-
imental results verify the efficacy of the proposed
framework for learning from noisy side information.

The remainder of this paper is organized as follows.
In section 2, we review the related work. In section 3,
we present the generalized maximum entropy learning
from noisy side information. We present experimental
results in section 4, and conclude our study in sec-
tion 5.

2. Related Work

In this section, we review the related work of learn-
ing from side information with its application to dis-
tance metric learning, constrained clustering, and ker-
nel learning . We also discuss the relation between
this work and previous work on learning from noisy
information.
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2.1. Learning from Side Information

The objective of learning from side information is to
learn a statistical model that is consistent with the
given pairwise constraints. There are three major ap-
plications of learning from side information, i.e., dis-
tance metric learning, constrained clustering, and ker-
nel learning. Below we briefly review each of the three
applications.

For distance metric learning, an appropriate dis-
tance metric is learned so that data points in
positive constraints are separated by a short
distance while data points in negative con-
straints are separated by a large distance. Many
algorithms(Xing et al., 2003; Shental et al., 2002;
Hoi et al., 2006a; Goldberger et al., 2004; Yang et al.,
2006; Weinberger et al., 2006) have been developed
for distance metric learning. More work on distance
metric learning from side information can be found
in the survey (Yang & Jin, 2006) and references
therein. For constrained clustering, the objective is to
improve the accuracy of data clustering by exploiting
the pairwise constraints. Based on how the con-
straints are used, the constrained clustering methods
can be cast into three categories: constrained-
based (Davidson & Ravi, 2005; Basu et al., 2004a),
distance-based (Bilenko & Mooney, 2003; Cohn et al.,
2003), and a mixture of these two (Basu et al., 2004b).
More work on constrained clustering with side in-
formation can be found in the (Davidson & Sugato,
2007), and the references therein. For kernel learning,
an appropriate kernel matrix/function for a given data
set is learned from a set of pairwise constraints. Re-
cent work on kernel learning from pairwise constraints
include (Hoi et al., 2007; Hoi & Jin, 2008).

Most studies on learning from side information assume
side information is noise-free. However, in many ap-
plications, the pairwise constraints are derived from
data, making them prone to errors. Although some
work (Basu et al., 2004b; Pelleg & Baras, 2007) claims
that their approaches are robust to noise in side infor-
mation, they do not have systematic approaches for
handling noisy constraints. In contrast, we present a
principled framework for learning from noisy side in-
formation based on the generalized maximum model.
We also provide theoretic analysis to further justify
the proposed approach for learning from noisy side in-
formation.

2.2. Learning from Noisy Label Information

Learning from noisy label information (not noisy
pairwise constraints) was considered in several stud-
ies. (Lawrence & Schölkopf, 2001) estimates a ker-

nel Fisher Discriminant in the presence of label noise.
Their work is based on two assumptions: (a) a Gaus-
sian distribution for the input patterns, and (b) a
known noise model for the corruption of class labels.
(Pal et al., 2007) presents a probabilistic model for ex-
tracting location information for events by using the
noisy training labels. Our work differs from these stud-
ies in that we deal with noisy pairwise constraints, not
noisy label information. In addition, we present theo-
retic analysis showing that under certain assumption,
the solution found by our algorithm using noisy side
information converges to the one trained from perfect
side information.

Finally, it is worthwhile pointing out that our ap-
proach is closely relate to the learning framework
based on divergence minimization (Altun & Smola,
2006). However, unlike the divergence minimization
framework that is designed for the standard setup of
supervised learning, our work focuses on learning from
noisy side information.

3. Learning from Noisy Side

Information

We start with the basic formulation for maximum en-
tropy learning from perfect side information, followed
by its generalization. We then extend the generalized
maximum entropy learning to the case of noisy side
information. For the purpose of presentation, we first
introduce the notations that are used throughout this
article.

3.1. Notations

Let D = {xi ∈ X , i = 1, · · ·N} be a collection of data
points, P = {(x1

i ,x
2
i , ŷi)|x1

i ,x
2
i ∈ D, i = 1, . . . , n, ŷi ∈

{+1,−1}} be a collection of observed labeled pairs.
We slightly abuse the terminology of labeled and un-
labeled examples by referring to the examples in D
that also occur in P as labeled examples, and to the
remaining examples in D as unlabeled examples. We
denote by yi the true label for the pair (x1

i ,x
2
i ). We

refer to the pairs with yi = +1 as perfect positive con-
straints and the pairs with yi = −1 as perfect nega-
tive constraints. Similarly, we refer to the pairs with
ŷi = +1 as noisy positive constraints and the pairs
with ŷi = −1 as noisy negative constraints. We use
ȳ = −y for complement of y. We useKj(x

1,x2) for the
jth ∈ {1, · · · ,m} feature function defined on X × X .
We denote by ki = (K1(x

1
i ,x

2
i ), · · · ,Km(x1

i ,x
2
i ))

⊤ the
feature vector for pair (x1

i ,x
2
i ). Throughout the paper,

we use capital letters X,Y, Ŷ for the corresponding
random variables. We define Pr(Ŷ = y|Y = y) = cy,
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and use c+ = c+1, c− = c−1 for short. Also, in the
sequel, we use the following notations:

ajδ[y] =
1

n

n∑

i=1

δ(yi, y)Kj(x
1
i ,x

2
i )

âjδ[y] =
1

n

n∑

i=1

δ(ŷi, y)Kj(x
1
i ,x

2
i )

where δ(yi, y) is the Kronecker delta function that out-
puts 1 if yi = y and zero, otherwise.

3.2. Learning from Perfect Side Information

by Generalized Maximum Entropy Model

We first consider the maximum entropy model for
learning from perfect side information. We cast the
problem of learning from side information into a binary
classification problem where the objective is to classify
each pair (x1

i ,x
2
i ) into two categories, i.e., a positive

pair (yi = +1) and a negative pair (yi = −1). Using
maximum entropy model, we aim to learn the condi-
tional distribution Pr(Y = y|X1, X2), which leads to
the following optimization problem:

max

n∑

i=1

H(p|x1
i ,x

2
i ) (1)

s.t.
1

n

n∑

i=1

p(y|x1
i ,x

2
i )Kj(x

1
i ,x

2
i ) = ajδ[y], ∀y, j

where H(p|x1
i ,x

2
i ) = −

∑
y p(y|x1

i ,x
2
i ) ln p(y|x1

i ,x
2
i ).

The solution to (1) is given by

p(y|x1
i ,x

2
i ) =

1

1 + exp(−yλ⊤ki)

where λ ∈ R
m are the dual variables and are obtained

by solving the following optimization problem,

min
λ∈Rm

n∑

i=1

ln
(
1 + exp(−yiλ

⊤ki)
)

One major problem with the maximum entropy model
in (1) is the equality constraint, which is unlikely to
hold if for each pair (x1

i ,x
2
i ), yi is a random sample

from the distribution p(y|x1
i ,x

2
i ). We denote by ajp[y]

the left side of equality constraint in problem (1), i.e.

ajp[y] =
1

n

n∑

i=1

p(y|x1
i ,x

2
i )Kj(x

1
i ,x

2
i )

The following theorem shows that ajp[y] and ajδ[y] could
differ significantly if n is small. The difference be-
tween the two quantities will diminish only when n
approaches infinity.

Theorem 1. Assume (x1
i ,x

2
i , yi) are i.i.d. sam-

ples from an unknown distribution P (X1, X2, Y ), the
equality constraint in (1) for any j and y holds with
probability 1 when the number of instances approaches
infinity. In particular, for any ǫ > 0 we have

Pr
(∣∣∣ajp[y]− ajδ[y]

∣∣∣ ≥ ǫ
)
≤ 4 exp

(
− ǫ2n

8κ2
j

)

where κj = max
x
1,x2

|Kj(x
1,x2)|.

The theorem can be proved by noting that E[ajδ[y]] =
E[ajp[y]] and applying McDiarmid’s inequality. Details
are provided in the supplementary material. To ad-
dress the case that ajp[y] and ajδ[y] could be different,
we propose a generalization to the traditional maxi-
mum entropy model in (1). Given the finite number of
training data, we relax the equality constraints in (1)
into inequality ones, leading to the following formula-
tion for learning from side information

max
1

n

n∑

i=1

H(p|x1
i ,x

2
i )−

1

2γ

∑

y

‖ǫy‖2 (2)

s.t.
1

n

∑

i

p(y|x1
i ,x

2
i )Kj(x

1
i ,x

2
i ) ≥ ajδ[y]− ǫyj , ∀y, j

where ǫy = (ǫy1, . . . , ǫym)⊤ and ‖ · ‖ is a norm that
measures the length of vector ǫy. The key features of
the generalized maximum entropy model in (2) are:

• Replacing equality constraints with inequality
ones. As a result, we have

ajδ[y]− ǫyj ≤ ajp[y] ≤ ajδ[y] + ǫȳj .

Note that although only one side inequality is in-
cluded in (2), the upper bound of ajp[y] can be

easily derived by using the relation ajp[y]+ajp[ȳ] =

ajδ[y] + ajδ[ȳ].
• The positive dummy variables ǫ are introduced to
account for the difference between the two empir-
ical means ajp[y] and ajδ[y]. A regularization term
‖ǫy‖2/(2γ) is introduced into the objective in or-
der to determine these variables automatically.

We further justify the generalized maximum entropy
model by showing it is equivalent to the regularized
logistic regression model.

Proposition 2. When ‖ · ‖ = ‖ · ‖2, the dual problem
of (2) is equivalent to the regularized logistic regression
model, i.e.,

min
λ∈Rd

γ

2
‖λ‖22 +

1

n

n∑

i=1

ln
(
1 + exp(−yiλ

⊤ki)
)
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3.3. Learning from Noisy Side Information by

Generalized Maximum Entropy Model

We extend the framework of generalized maximum en-
tropy learning to the case when pairwise constraints
are noisy, i.e., ŷi 6= yi for some pairs. The advantage
of extending the maximum entropy model for noisy
side information is that the label information yi is only
utilized in computing ajδ[y]. Hence, if we have an al-

ternative approach to estimate ajδ[y] without having to
know which labels are incorrect, we can construct the
maximum entropy model for noisy side information.

In order to estimate ajδ[y] in the case of noisy side
information, we make the following assumptions.

Assumption 1. We assume (1.a) Pr(Ŷ |X1, X2, Y ) =

Pr(Ŷ |Y ), (1.b) Pr(Ŷ = y|Y = y) = cy is given and
(1.c) cy + cȳ − 1 > 0.

In the above assumption, (1.a) assumes Ŷ is condition-
ally independent of (X1, X2) given Y , (1.b) assumes
the group-level knowledge about the noise in the pair-
wise constraints and (1.c) essentially assumes that the
noise level of the side information is not too signif-
icant. With these three assumptions, the following
theorem shows that it is possible to express empirical
mean ajδ[y] in terms of âjδ[y], i.e., the empirical mean
estimated from the noisy side information.

Theorem 3. Assume (x1
i ,x

2
i , ŷi), i = 1, . . . , n are i.i.d

samples, then for any ǫ > 0 we have

Pr
(∣∣∣ajδ[y]− b̂jδ[y]

∣∣∣ ≥ ǫ
)
≤ 4 exp

(
− ǫ2(cy + cȳ − 1)2n

8κ2
j

)

where

b̂jδ[y] =
âjδ[y]

(cy + cȳ − 1)
− 1

n

(1− cȳ)

cy + cȳ − 1

n∑

i=1

Kj(x
1
i ,x

2
i )

The proof can be found in the supplementary material.
As indicated by Theorem 3, under Assumption 1, we
can approximate ajδ[y] by b̂jδ[y]. It is interesting to note
that the convergence rate is O (1/[(cy + cȳ − 1)

√
n]),

not O(1/
√
n). Thus, when the noise level of pairwise

constraints is high, i.e., cy + cȳ − 1 is small, the two
quantities could still differ significantly even with mod-
est number of training pairs. Similar to Theorem 3, we
can have the following corollary to bound the differ-
ence between ajp[y] and b̂jδ[y].

Corrolary 4. Assume (x1
i ,x

2
i , ŷi), i = 1, . . . , n are

i.i.d samples, then for any ǫ > 0 we have

Pr
(∣∣∣ajp[y]− b̂jδ[y]

∣∣∣ ≥ ǫ
)
≤ 4 exp

(
− ǫ2(cy + cȳ − 1)2n

8κ2
j

)

With theorem 3 and corollary 4, we finally arrive at
the following formulation for generalized maximum en-
tropy learning from noise side information

max
1

n

n∑

i=1

H(p|x1
i ,x

2
i )−

1

2γ

∑

y

‖ǫy‖2 (3)

s.t.
1

n

n∑

i=1

p(y|x1
i ,x

2
i )Kj(x

1
i ,x

2
i ) ≥ b̂jδ[y]− ǫyj

3.4. Optimization, Analysis and Application to

Kernel Learning

We present the dual formulation to the generalized
maximum entropy learning from noisy side informa-
tion in (3). To simplify our presentation, we define

b̂1 = (̂b1δ[y], . . . , b̂
m
δ [y])⊤|y=1, b̂0 = (̂b1δ[y], . . . , b̂

m
δ [y])⊤|y=−1

The dual problem to (3) is given by

max
λ1,λ0∈R

m

+

λ⊤
1 b̂1 + λ⊤

0 b̂0 −
γ

2
(‖λ1‖2∗ + ‖λ0‖2∗) (4)

− 1

n

∑

i

ln
(
exp(λ⊤

1 ki) + exp(λ⊤
0 ki)

)

where ‖ · ‖∗ is the dual norm of ‖ · ‖. The resulting
conditional distribution p(y|x1,x2) is given by

p(y = 1|x1,x2) =
exp((λ1 − λ0)

⊤k(x1,x2))

1 + exp((λ1 − λ0)⊤k(x1,x2))
(5)

Next, we show how the solution λ1 and λ0 will be
affected when replacing ajδ[y] with b̂jδ[y], i.e., the em-
pirical mean computed from the noisy pairwise con-
straints.

Theorem 5. Assume ℓ2 norm is in the generalized
maximum entropy model, i.e., ‖ · ‖ = ‖ · ‖2. Let λ∗ =

(λ∗
1, λ

∗
0) be the solution to (4) with b̂∗ =

(
b̂∗
1, b̂

∗
0

)
, and

λo = (λo
1, λ

o
0) be the solution with b̂o =

(
b̂o
1, b̂

o
0

)
. We

have

‖λ∗ − λo‖F ≤ 2

γ
‖b̂∗ − b̂o‖F

The proof for the theorem as well as the following the-
orems can be found in the supplementary material.
Combining Theorem 5 and Theorem 3, we have the fol-
lowing theorem showing the impact of replacing ajδ[y]

with b̂jδ[y].

Theorem 6. Let ‖ · ‖ = ‖ · ‖2. Let p̂(y|x1,x2) be the
conditional model derived from noisy side information
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using (3), and p(y|x1,x2) be the conditional model de-
rived from the perfect side information using (2). Un-
der Assumption 1, with probability 1 − δ, for any x1,
x2 and y, we have

∣∣p̂(y|x1,x2)− p(y|x1,x2)
∣∣ ≤ 4mκ2

γc

√
8

n
ln

(
8m

δ

)

where κ = max1≤j≤m κj, and c = c+ + c− − 1.

As indicated by the above theorem, the difference be-
tween two conditional models will be reduced at the
rate of 1/[(c+ + c− − 1)

√
n]. Finally, since our al-

gorithm depends on the knowledge of c+ and c−, we
further analyze the behavior of the proposed algorithm
with inaccurate estimation of c+ and c−. We denote
by ĉ+ and ĉ− the estimates of c+ and c−, respectively.
We define p̃(y|x1,x2) the conditional model derived
from the noisy side information using ĉ+ and ĉ−. We
measure the difference (c+, c−) and their estimates by
∆ = max(|c+−ĉ+|, |c−−ĉ−|). The next theorem shows
the difference between p̃(y|x1,x2) and p(y|x1,x2).

Theorem 7. Let ‖ · ‖ = ‖ · ‖2. Let p̃(y|x1,x2) be
the conditional model derived from noisy side informa-
tion with ĉ+ and ĉ−, and p(y|x1,x2) be the conditional
model derived from the perfect side information using
(2). Assume c++ c−− 1 ≥ ρ with ρ ≥ 0 and ∆ ≤ ρ/4.
Under Assumption 1, with probability 1 − δ, for any
x1, x2 and y, we have

∣∣p̃(y|x1,x2)− p(y|x1,x2)
∣∣ ≤ 4mκ2

γc

√
8

n
ln

8m

δ
+
32κm∆

γρ2

We finally discuss the application of the generalized
maximum entropy learning from side information to
kernel learning. In this case, Kj(x

1,x2) is a candi-
date kernel function, and the solution to (5) could
provide us the way to linearly combine kernels, i.e.,∑

j(λ
j
1 − λj

0)Kj . However, the combined kernel may
not be positive semi-definite, because some weights
λj
1 − λj

0 are negative. To ensure the combined ker-
nel to be valid, we introduce one more constraint
λj
1 ≥ λj

0, j = 1, . . . ,m to the optimization problem
in (3). The optimization problems are solved by Nes-
terov method (Nemirovski, 1994).

4. Experiments

We evaluate the proposed algorithm by clustering the
linked documents. We first present the experiments on
clustering linked documents with noisy pairwise con-
straints derived from the link information. We then ex-
amine the behavior of the proposed algorithm in more
details. Before presenting the experimental results, we

Table 1. Statistics of Data sets

name #examples #words #links #classes

Cora 2708 1433 5429 7
Citeseer 3312 3703 4732 6
TeAt 1293 106 571 6

first introduce the data sets, baselines and evaluation
metric.

Data Sets We select three linked document data sets,
i.e. Cora, Citeseer, Terrorist Attacks(TeAt) 1 for our
evaluation. They were processed by the research group
of Lise Getoor 2. Each data set contains (1) a set
of documents described by binary vectors indicating
the presence and absence of words from a dictionary,
(2) links among documents (e.g., citations between re-
search articles), and (3) the class assignment for each
document. The statistics of these three data sets are
summarized in Table 1. In the experiments, the at-
tributes for each document are normalized by first di-
viding the sum of the attributes and then taking the
square root (Jebara et al., 2004).

Evaluation In order to evaluate the proposed algo-
rithm, we apply it to kernel learning as described at
the end of Section 3. In particular, for each attribute
j, we construct a linear kernel matrix Kj(x

1,x2) =
x1[j]x2[j] for paired documents (x1,x2), where x[j] is
the jth normalized attribute of document x. The pro-
posed algorithm will be applied to learn the combina-
tion of multiple kernel matrices from the noisy pairwise
constraints derived from links. The ℓ2 norm is used
in the proposed algorithm. Given the learned kernel
matrix, a spectral clustering algorithm (Shi & Malik,
1997) is applied for document clustering. We evaluate
the clustering result by comparing it to the class as-
signment information provided in each data set. Nor-
malized mutual information(NMI) (Yang et al., 2009)
is used as our evaluation metric. For all the exper-
iments, we set γ in the proposed algorithm to be
0.01/c2, where c = c+ + c− − 1.

Baseline We compare the proposed algorithm to
the following metric/kernel learning algorithms: (a)
GDM, the global distance metric learning algo-
rithm (Xing et al., 2003), (b)DCA, the discriminative
component analysis algorithm (Hoi et al., 2006a), (c)
ITML, the information theoretic metric learning algo-
rithm proposed by (Davis et al., 2007), and (d) SKL,

1We choose these data sets because they have relatively
low noise (20% ∼ 35%) in their pairwise constraints derived
from links that satisfies the condition c+ + c

−
− 1 > 0 in

Assumption 1.
2www.cs.umd.edu/projects/linqs/projects/lbc/

www.cs.umd.edu/projects/linqs/projects/lbc/
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the spectral kernel learning algorithm (Hoi et al.,
2006b). For fair comparison, the distance metric A
learned by the metric learning algorithms will be used
to construct a kernel matrix K = XAX⊤, where X is
the data matrix, and the same spectral clustering al-
gorithm will be applied to K for document clustering.
We also evaluate the proposed algorithm against the
metric pairwise constrained K-means clustering algo-
rithm (Basu et al., 2004b), referred to as MPCK. In
order to improve the robustness of MPCK to noisy
constraints, we follow (Liu et al., 2007) and weight the
noisy positive constraints and the noisy negative con-
straints by c+, c− respectively to reduce their impact
on the clustering results. As the reference point, we
compute a linear kernel for both labeled and unlabeled
examples, without using the provided pairwise con-
straints. We refer to this baseline as base. Finally,
we refer to as GMEns the proposed generalized max-
imum entropy model for learning from noisy side in-
formation, and as GMEs the generalized maximum
entropy model without considering the noise in side
information. All the experiments are run five times
and the clustering accuracy averaged over five runs is
reported in our study.

4.1. Experiments on Real Noisy Constraints

We conduct experiments of document clustering with
the noisy pairwise constraints derived from the links
between documents. In particular, we use all the
linked document pairs as the positive constraints. The
same number of document pairs without link are sam-
pled to construct the negative constraints. To obtain
the noise levels of the pairwise constraints, we sam-
ple a total of 100 pairwise constraints and estimate c+
and c− based on the correctness of the sampled con-
straints 3. Figures 1(a), 2(a) and 3(a) show the clus-
tering accuracy measured in NMI for the three data
sets. The mean values of the estimated c+ and c− are
listed under each figure. We observe that given the
noisy pairwise constraints, all the algorithms except
ITML perform significantly worse on at least one data
set than the reference method base. In contrast, the
proposed algorithm for learning from noisy pairwise
constraints outperforms the reference method signifi-
cantly for all three data sets. We thus conclude that
the proposed algorithm is overall more robust to noise
in the side information.

3These validated pairwise constraints are also used by
the other baseline methods for computing distance metrics
and kernel matrices

4.2. Controlled Experiments with Synthetic

Noisy Constraints

In this section, we examine the robustness of the pro-
posed algorithm to (a) different noise levels in syn-
thetically generated pairwise constraints, and (b) the
estimated values for c+ and c−.

Robustness to the Noise We first sample 10, 000
pairwise constraints from each data set, with 5, 000
positive constraints and 5, 000 negative constraints.
Random noise is introduced to the synthetic con-
straints by randomly flipping the label of a pair with a
probability p%, where p% specifies the noise level. We
set c+ and c− to be 1− p%, with the assumption that
the knowledge of noise level is perfect. To examine the
impact of noisy positive constraints and noisy nega-
tive constraints separately, for each data set, with a
given noise level p%, we conduct two experiments, one
with corrupted positive constraints but perfect nega-
tive constraints, and the other with corrupted nega-
tive constraints but perfect positive constraints. Fig-
ures 1(b), 2(b) and 3(b) compare the clustering results
for GMEns and GMEs with the noise levels in the
synthetic pairwise constraints varied from 10% to 90%
on the three data sets. We observe that GMEns, the
generalized maximum entropy model for noisy side in-
formation, is significantly more robust to the noise in
the pairwise constraints than GMEs which does not
take into account the noise in side information. We
also observe that the noisy positive constraints have
significantly higher adverse impact on the clustering
results than the noisy negative constraints.

Sensitivity to c+, c− We use the same set of 10, 000
randomly sampled pairwise constraints for this study.
We add the same noise level to both positive con-
straints and negative constraints. To investigate the
sensitivity to c+, c−, instead of setting them to be
1−p%, we perturb these parameters by setting them to
be (1− p%)(1± e%). Figures 1(c), 2(c) and 3(c) show
the results of GMEns on the three data sets with
four noise levels p% = 10% ∼ 40% for e% = 1%, 10%.
We observe that GMEns is overall robust to mod-
est perturbation level, making the proposed algorithm
applicable even when the assumed noise levels are in-
accurate.

Finally, we compare the proposed algorithm to the
baselines on the synthetic noisy constraints by vary-
ing the level of noise. Due to the fact that some of
the baseline algorithms are time consuming, one thou-
sand pairs are sampled for positive constraints and
negative constraints, respectively. We show the re-
sults on the noise added to the positive constraints
due to its stronger effect on the performance. Fig-
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Figure 1. Experimental results on Cora data set (a) Comparison with baselines on real noisy constraints; (b) Robustness to
the noise in synthetic constraints; (c) Sensitivity to c+, c−; (d) Comparison with baselines on synthetic noisy constraints.
The same placement of subfigures applies to Figure 2 and Figure 3.
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Figure 2. Experimental results on Citeseer data set

ures 1(d), 2(d) and 3(d) show the clustering results
of all algorithms at three noise levels: low(10%),
medium(40%), high(70%) on the three data sets. We
observe that the proposed algorithm is able to outper-
form all the baseline algorithms for all the cases.

5. Conclusions

We have proposed a generalized maximum entropy
model for learning from noisy side information, and
discussed its application to kernel learning. Our the-
oretical analysis shows that the model trained from
the noisy side information converges to the model
trained from the perfect side information. Extensive
experimental results verify the efficacy of the proposed
model. In the future, we plan to apply the proposed
approach to problems in other domains, including vi-
sual object recognition and gene expression pattern
prediction.
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