
Efficient learning algorithms for changing environments

Elad Hazan ehazan@cs.princeton.edu
C. Seshadhri csesha@cs.princeton.edu

IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120 USA

Abstract

We study online learning in an oblivi-
ous changing environment. The stan-
dard measure of regret bounds the dif-
ference between the cost of the online
learner and the best decision in hind-
sight. Hence, regret minimizing algo-
rithms tend to converge to the static
best optimum, clearly a suboptimal be-
havior in changing environments. On
the other hand, various metrics proposed
to strengthen regret and allow for more
dynamic algorithms produce inefficient
algorithms.

We propose a different performance met-
ric which strengthens the standard met-
ric of regret and measures performance
with respect to a changing compara-
tor. We then describe a series of data-
streaming-based reductions which trans-
form algorithms for minimizing (stan-
dard) regret into adaptive algorithms
albeit incurring only poly-logarithmic
computational overhead.

Using this reduction, we obtain efficient
low adaptive-regret algorithms for the
problem of online convex optimization.
This can be applied to various learning
scenarios, i.e. online portfolio selection,
for which we describe experimental re-
sults showing the advantage of adaptiv-
ity.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

1. Introduction

In online optimization the decision maker itera-
tively chooses a decision without knowledge of the
future, and pays a cost based on her decision and
the observed outcome. The game theory and ma-
chine learning literature has produced a host of
algorithms which perform nearly as well as the
best single decision in hindsight. Formally, the
average regret of the online player, which is the
average difference between her cost and the cost
of the best strategy in hindsight, approaches zero
as the number of game iterations grows.

In scenarios in which the environment variables
are sampled from some (unknown) distribution,
regret minimization algorithms effectively “learn”
the environment and approach the optimal strat-
egy. However, if the underlying distribution
changes, no such claim can be made.

When the environment undergoes many changes,
regret may not be the best measure of perfor-
mance. Various researchers noted the “static” be-
havior of regret-minimizing algorithms and gener-
alized the concept of regret to allow for a changing
prediction strategy (Herbster & Warmuth, 1998;
Freund et al., 1997; Lehrer, 2003; Blum & Man-
sour, 2007). Although of great generality and im-
portance to various scenarios, previous research
fails to provide for efficient algorithms for contin-
uous online optimization problems, in particular
portfolio management.

In this paper we aim to strike a balance between
efficiency and adaptivity: we define a new mea-
sure of regret called adaptive regret , which is less
general than some previous approaches, but gen-
eral enough to capture intuitive notions of adap-

Efficient learning algorithms for changing environments

tivity. We then then use sketching and data
streaming techniques to design efficient learning
algorithms.

Our main result is an efficiency preserving reduc-
tion which transforms any low regret algorithm
into a low adaptive regret algorithm. Adaptive
regret deals with the behavior of learning algo-
rithms on contiguous intervals, which very intu-
itively captures how well it tracks the progress of
the environment. We give several variants of on-
line convex optimization algorithms whose cost on
any contiguous sequence of iterations is within a
small additive term with respect to the local opti-
mum - i.e. the cost of the optimal decision on this
particular sequence of iterations. In contrast, low
regret guarantees small difference in cost only over
the entire sequence of iterations and compared to
the global optimum. In particular, we give the
first efficient adaptive algorithm for online port-
folio management.

1.1. Formal statement of results

In online convex optimization, in each round t =
1, 2, ..., the decision maker plays a point xt from
a convex domain K ⊆ Rn. A convex loss function
ft is presented, and the decision maker incurs a
loss of ft(xt). The standard performance measure
is regret, which is the difference between the loss
incurred by the online player using algorithm A
and the best fixed optimum in hindsight:

RegretT (A) =
T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x∗)

We consider an extension of the above quantity
to measure the performance of a decision maker
in a changing environment:

Definition 1.1. The adaptive regret of an online
convex optimization algorithm A is defined as the
maximum regret it achieves over any contiguous
time interval. Formally

Adaptive-RegretT (A) ,

sup
I=[r,s]⊆[T]

{
s∑
t=r

ft(xt)− min
x∗I∈K

s∑
t=r

ft(x∗I)

}

A crucial point in the above definition is that the
comparison in cost is with respect to a different
optimum for any interval, i.e. x∗I can vary arbi-
trarily with I. Intuitively, this quantity measures
on every interval of time how well we performed,
compared to the optimum in hindsight for that
interval. Ideally, we want the adaptive regret to
be strongly sublinear.

Why is attaining low adaptive regret difficult?
Here is a simple explanetory example in which
current algorithms fail: Consider the simple ex-
ample of square loss in one dimension. In each
round, we play a point xt ∈ [−1, 1]. The loss
function ft is one of the two functions ft(x) ∈
{(x − 1)2, (x + 1)2}. For this scenario, the sim-
ple “follow-the-leader” algorithm, which plays the
optimum decision so far - xt+1 = t−1 ·

∑t
i=1 yi,

where yt is ∈ {±1} appropriately - is known to
attain O(log T) regret (Cesa-Bianchi & Lugosi,
2006). Consider the case in which the function
is (x−1)2 for the first half of the game iterations,
and then (x + 1)2 for the rest. The optimum is
hindsight is the point 0, and that is exactly where
all present algorithms that give O(log T) regret
converge to. However, this behavior is disastrous
in terms of adaptive regret- current low regret al-
gorithms take too long (linear time) to converge to
−1, and attain adaptive regret of Ω(T). The goal
of standard Regret minimization is too encum-
bered with the past to be able to shift rapidly. In
contrast, the following Theorem asserts an algo-
rithm whose “shifting time” is poly-logarithmic.

Theorem 1.1. For online convex optimization
with exp-concave loss functions (i.e. the online
portfolio selection problem), there exists an algo-
rithm with Adaptive-RegretT = O(log2 T) 1 and
running time poly(n, log T).

A natural question that arises is whether the
O(log2 T) adaptive regret is tight. In the full ver-
sion of this paper (see (Hazan & Seshadhri, 2007))
we show that in fact O(log T) adaptive regret is
attainable and tight. However, the running time
deteriorates to poly(n, T).

1We can also ensure that the “standard regret” remains
O(log T).

Efficient learning algorithms for changing environments

1.2. Logarithmic vs. polynomial regret

The results stated above assume exp-concave loss
functions (which apply to portfolio selection).
Our reductions are general enough to apply to
convex cost functions (i.e. linear costs) 2, how-
ever in this abstract we focus on the exp-concave
case which allows for logarithmic, rather than the
usual square-root, regret. The reason is that in
this setting no polynomial time adaptive algo-
rithms were known. In contrast, Zinkevich’s al-
gorithm for general convex functions (Zinkevich,
2003) does run in polynomial time and has adap-
tive guarantees. For the latter general convex case
our improvement is in terms of efficiency only, al-
though not as dramatic (for example, in online
shortest paths, Zinkevich’s algorithm would re-
quire to solve a convex program which takes time
roughly Õ(n3.5), vs. our implementation which
would require O(log T) shortest path computa-
tions).

1.3. Relation to previous work

The notion of dealing with stronger performance
notions than regret has been dealt with in (Herb-
ster & Warmuth, 1998; Bousquet & Warmuth,
2003) on “tracking the best expert”. Their fo-
cus was on the discrete expert setting and exp-
concave loss functions. In this scenario, they
proved regret bounds versus the best k-shifting
expert, where the optimum in hindsight is allowed
to change its value k times. Freund et al. (1997)
generalize this to a setting in which only a subset
of the experts make predictions in different itera-
tions. This is further generalized by Lehrer (2003)
and Blum and Mansour (2007) to deal with more
complicated situations where the total loss of an
expert is computed by assigning a weight wt to
the loss of the expert in round t. The notion of
adaptive regret is a (scaled) special case of these
generalized regret definitions, in which temporal
locality is given special importance.

Our setting differs from these expert settings in
the following respects. We consider continuous

2In the full version of this manuscript, available at
(Hazan & Seshadhri, 2007), this generalization will be de-
tailed

decision sets rather than discrete. Although it
is possible to discretize continuous sets and ap-
ply previous algorithms, such reductions are inef-
ficient, resulting in exponential time algorithms.
As for performance guarantees, the notion of
adaptive regret generalizes (and is not equivalent
to) regret versus the best k-shifting optimum: an
algorithm with O(R) adaptive regret obviously
has O(kR) regret against a k-shifting compara-
tor. The converse is not necessarily true, since
regret can be negative.

In independent work, Kozat and Singer (2007) at-
tained related bounds of regret vs. a k-shifting
strategy for the portfolio management problem.
Our setting is more general, as it allows to tackle
the general online convex optimization problem
efficiently, and the techniques used are completely
different.

2. Preliminaries

Various online problems can be modeled in the
online convex optimization framework, as defined
above. For example, the online portfolio selection
problem (Cover, 1991) is modeled by taking the
convex set to be the set of all distributions over
n assets - i.e. the n dimensional simplex. The
loss functions are taken to be ft(x) = − log(x ·
rt), where rt is the return vector, a non-negative
vector which contains in each coordinate the ratio
of closing to opening price for the corresponding
asset.

We say that a loss function is α-exp-concave if
the function e−αf(x) is concave (i.e. the loss func-
tions in online portfolio selection). For simplicity
we henceforth assume that the cost functions are
bounded over the decision set in absolute value by
one (generalization is a simple matter of scaling).

We shall base our results on the following well-
known fact from online learning theory:

Fact 2.1. There exist algorithms for online con-
vex optimization with α-exp-concave loss func-
tions which attain regret O(1

α log T) and run in
time O(n3) (Hazan et al., 2006). Any on-
line algorithm must suffer worst case regret of
RegretT (OPT) = Ω(1

α log T) (Cover, 1991).

Efficient learning algorithms for changing environments

3. The Algorithm

The basic idea of our algorithm is to reduce the
continuous optimization problem at hand to the
discrete realm of experts, which are themselves
online optimization algorithms. We chose the
”sub algorithms” such that at least one is guar-
anteed to have good performance at any game
iteration.

To choose amongst the experts, we apply a
twist on the well studied Multiplicative Weights
method (the standard approach needs to be mod-
ified since our expert set keeps changing through-
out the game and since we require additional
adaptivity properties).

In order to improve efficiency, we prune the set
of experts which are added online. We formally
define the properties required of the ground set of
experts, and the resulting recipe turns out to be
an easily expressible abstract streaming problem.
Incorporating the data streaming ideas yields an
efficient algorithm.

3.1. Algorithm description

The basic algorithm, which we refer to as Follow-
the-Leading-History (FLH), is detailed in the fig-
ure below. It uses many online algorithms, each
attaining good regret for a different segment in
history, and chooses the best one using expert-
tracking algorithms. The experts are themselves
algorithms, each starting to predict from a differ-
ent point in history. The meta-algorithm used to
track the best expert is inspired by the Herbster-
Warmuth algorithm (1998). However, our set of
experts continuously changes, as more algorithms
are considered and others are discarded.

The experts that we use, denoted by E1, · · · , ET
are low-regret algorithms that use different start-
ing points in time to make predictions. The ex-
pert Et will be a standard online algorithm that
starts making predictions from round t and does
not consider the history before time t. To main-
tain all of these experts simultaneously would be
too time consuming. For the sake of efficiency,
we maintain a working set of experts, St, that
changes every round. At round t, the pertinent

set of experts is {E1, · · · , Et} (abusing notation,
we will refer to experts by their indices, so this
set is just [1, t]). The set St will be a very sparse
subset of [1, t]. After round t, St is updated to
get St+1. This is done by adding t + 1 (the ex-
pert Et+1) and removing some experts from St.
Once removed, an expert cannot be added to the
working set.

The problem of maintaining the set of active ex-
perts can be thought of as the following abstract
data streaming problem. Suppose the integers
1, 2, · · · are being “processed” in a streaming fash-
ion. At time t, we have “read” the positive inte-
gers upto t and maintain a very small subset of
them St. A time t we create St+1 from St: we are
allowed to add to St only the integer t + 1, and
remove any integer already in St. Our aim is to
maintain a short “sketch” of the data seen so far.

We now describe the algorithm Follow-the-
Leading-History. For the sake of clarity, we sep-
arately explain how the working set of experts is
maintained.

Generation of working sets: We maintain
the working sets using an algorithm due to
Woodruff (2007) (there is another randomized so-
lution to this streaming problem due to (Gopalan
et al., 2007), which is simpler to apply but gives
somewhat worse bounds). Any integer i can be
uniquely written as i = r2k where r is odd. Let
the lifetime of integer i be 2k+2 + 1. Suppose the
lifetime of i is m. Then for any time t ∈ [i, i+m],
integer i is alive at t. The set St is simply the set
of all integers that are alive at time t. Obviously,
at time t, the only integer added to St is t.

Woodruff proved that the following properties are
maintained by the scheme above. The first, and
most important, property of the sets St essentially
means that St is “well-spread” out in a logarith-
mic scale. This is depicted in Figure 1.

Figure 1. The set St

Efficient learning algorithms for changing environments

Property 3.1. 1. For every positive s ≤ t,
[s, (s+ t)/2] ∩ St 6= φ.

2. For all t, |St| = O(log T).

3. For all t, St+1\St = {t+ 1}.

Algorithm 1 Follow-the-Leading-History (FLH)
1: Let E1, ..., ET be online convex optimization

algorithms. Let St ∈ [t] be a set of experts,
S1 = {1}. Initialize p1

1 = 0, for any t pt is a
distribution over St.

2: for t = 1 to T do
3: Set ∀j ∈ St , x(j)

t ← Ej(ft−1) (the predic-
tion of the j’th algorithm) and
play xt =

∑
j∈St

p
(j)
t x

(j)
t .

4: Multiplicative Update - After receiving ft,
set p̂(t+1)

t+1 = 0 and perform update for i ∈ St
-

p̂
(i)
t+1 =

p
(i)
t e
−αft(x

(i)
t)∑

j∈St
p
(j)
t e−αft(x

(j)
t)

5: Addition step - Set p(t+1)
t+1 to 1/(t + 1) and

for i 6= t+ 1: p(i)
t+1 = (1− (t+ 1)−1)p(i)

t+1

6: Pruning step - Update St to the set St+1.
For all i ∈ St+1:

p
(i)
t+1 =

p̂
(i)
t+1∑

j∈St+1
p̂
(j)
t+1

7: end for

Note that the running time per round is bounded
by the size of the St’s times the running time of
each expert. For efficiency, it is crucial that the St
sets are very small. Yet for maintaining low adap-
tive regret, we will need the first and third proper-
ties, i.e. the well-spread out nature of St and the
fact that every new integer “gets a chance” and is
always added. We henceforth prove the following
theorem:

Theorem 3.1. If all loss functions are α-exp con-
cave then the FLH algorithm attains adaptive re-
gret of O(α−1 log2 T). The running time per iter-
ation is O(n3 log T).

3.2. Proof of performance guarantees

The low adaptive regret guarantees of FLH are
a consequence of the following two lemmas. The
first lemma is obtain as a consequence of the “ex-
pert” algorithm applied to the set of experts St.

Lemma 3.1. For any interval I = [r, s] in
time, suppose that Er stays in the working set
throughout I. Then, the algorithm FLH gives
O(α−1(ln r+ ln |I|)) regret with respect to the best
optimum in hindsight for I.

Before proving this lemma, let us state the fol-
lowing lemma in which the streaming algorithm
comes into effect, and prove the main theorem.

Lemma 3.2. For interval I = [r, s], the regret
incurred by the FLH for any interval I is at most
O(1

α log s · log |I|+ 1).

Proof. Let |I| ∈ [2k, 2k+1). We will prove by in-
duction on k.

base case: For k = 1, the bound on the adaptive
regret is an easy consequence of the fact that the
cost functions are bounded in absolute value by
one, hence ft(xt)− ft(x∗t) ≤ log t · log 1 + 1 = 1.

induction step: By the properties of the work
sets {St}, there is an expert Ei in the working set
Ss at time s, with i ∈ [r, (r+ s)/2], such that the
following holds. This expert Ei entered the work-
ing set at time i and stayed throughout [i, s]. By
Lemma 3.1, the algorithm incurs adaptive regret,
and hence regret, of at most c1 · 1

α(log i+ log |I|)
in [i, s], for some c1 ≥ 0. Formally, since s ≥ |I|,

∀x∗ .
∑s

t=i ft(xt)− ft(x∗) ≤
c1
α (log i+ log |I|)

≤ 2c1
α log s

The interval I2 = [r, i−1] has size |I2| ∈ [2k−1, 2k)
at most half of the entire interval I, and by
induction the algorithm has regret of at most
c2
α log |I2|·log i ≤ c2

α k log s on this interval for some
c2 > 0, i.e.

∀x∗ .
i−1∑
t=r

ft(xt)− ft(x∗) ≤
c2k

α
log s

Efficient learning algorithms for changing environments

Combining both previous equations,

∀x∗ .
∑s

t=r ft(xt)− ft(x∗) ≤
c2
α (k + 2c1

c2
) log s

≤ c2(k+1)
α log s ≤ c2

α log s · log |I|

Proving the induction hypothesis for a constant
c2 which satisfies c2 ≥ 2c1.

We can now deduce Theorem 1.1: By Fact 2.1,
the running time of FLH is bounded by O(|St|n3).
Since |St| = O(log t), we can bound the running
time by O(n3 log T). This fact, together with
Lemma 3.2, completes the proof of Theorem 3.1.
Note that by always keeping E1 in the working
set, we can ensure that the (standard) regret is
bounded by O(log T).

We proceed to complete the missing step in the
proof above, i.e. Lemma 3.1.

By assumption expert Er gives 1
α log |I| regret in

the interval I (henceforth, the time interval I
will always be [r, s]). We will show that FLH
will be competitive with expert Er in I. To
prove Lemma 3.1, it suffices to prove the following
claim.

Claim 3.1. For any I = [r, s], suppose that Er

stays in the working set throughout I. The regret
incurred by FLH in I with respect to expert Er is
at most 2

α(ln r + ln |I|).

We first prove the following claim, which gives
bounds on the regret in any round and then sum
these bounds over all rounds.

Claim 3.2. 1. For i ∈ St,

ft(xt)− ft(x(i)
t) ≤ α−1(ln p̂(i)

t+1 − ln p̂(i)
t + 2/t)

2. ft(xt)− ft(x(t)
t) ≤ α−1(ln p̂(t)

t+1 + ln t)

Proof. Using the α-exp concavity of ft -

e−αft(xt) = e−αft(
∑

j∈St
p
(j)
t x

(j)
t)

≥
∑
j∈St

p
(j)
t e−αft(x

(j)
t)

Taking logarithm,

ft(xt) ≤ −α−1 ln
∑
j∈St

p
(j)
t e−αft(x

(j)
t)

Hence,

ft(xt)− ft(x(i)
t)

≤ α−1(ln e−αft(x
(i)
t) − ln

∑
j∈St

p
(j)
t e−αft(x

(j)
t))

= α−1 ln
e−αft(x

(i)
t)∑

j∈St
p
(j)
t e−αft(x

(j)
t)

= α−1 ln
(1

p
(i)
t

· p
(i)
t e
−αft(x

(i)
t)∑

j∈St
p
(j)
t e−αft(x

(j)
t)

)
= α−1 ln

p̂
(i)
t+1

p
(i)
t

(1)

The lemma is now obtained using the bounds of
Claim 3.3 below.

Claim 3.3. 1. For i ∈ St, ln p(i)
t ≥ ln p̂(i)

t − 2/t

2. ln p(t)
t ≥ − ln t

Proof. For i ∈ St, p(i)
t ≥ p

(i)
t = (1−1/t)p̂(i)

t . Also,
p
(t)
t ≥ p

(t)
t = 1/t. Taking the natural log of both

these inequalities completes the proof.

We are now ready to prove Claim 3.1.

Proof. (Claim 3.1) We are looking at regret in I
with respect to an expert Er. Since r ∈ St, for
any t ∈ I, we can apply Claim 3.2.

s∑
t=r

(ft(xt)− ft(x(r)
t))

= (fr(xr)− fr(x(r)
r)) +

s∑
t=r+1

(ft(xt)− ft(x(r)
t))

≤ α−1
(
ln p̂(r)

r+1 + ln r

+
s∑

t=r+1

(ln p̂(r)
t+1 − ln p̂(r)

t + 2/t)
)

= α−1(ln r + ln p̂(r)
s+1 +

s∑
t=r+1

2/t)

Since p̂(r)
s+1 ≤ 1, ln p̂(r)

s+1 ≤ 0. This implies that the
regret is bounded by 2α−1(ln r + ln |I|).

Efficient learning algorithms for changing environments

4. Experimental evidence in support of
adaptive regret

We implemented the Online Newton Step algo-
rithm (ONS) of (Hazan et al., 2006; Agarwal
et al., 2006), as well as the its adaptive version,
as given in the above reductions. We used the
exact same data set of (Agarwal et al., 2006) to
repeat the same tests for these two algorithms.
The tests are performed over a set of 50 ran-
dom S&P 500 stocks and a period of 1000 trading
days. Over this ground set of stocks, we chose
n ∈ [5, 10, 15, 20, 25] random stocks, and applied
the two algorithms which were allowed to trade
once every five trading days. This set of n ran-
dom stocks is sampled one hundred times, and the
final result is averaged.

The figure below depicts the performance of ONS
and its adaptive version in terms of APY (annual
percentage yield).

Figure 2. Standard ONS vs Adaptive ONS

As can be clearly seen, adaptivity gives a consis-
tent one to two percent improvement in terms of
APY, which amounts to roughly ten percent im-
provement in performance. Similar performance
gains were observed in the other tests proposed
by (Agarwal et al., 2006).

5. Conclusions and Future Work

In this paper we have investigated the notion
of learning in a changing environment, and in-

troduced online convex optimization algorithms
which are adaptive in the sense that the converge
to the local optimum of a contiguous time interval
at almost the fastest possible rate. This is a gen-
eralization of previous adaptive algorithms, which
were designed for the discrete setting, and allows
us to tackle continuous problems such as portfolio
management or problems with a large decision set
i.e. online shortest paths.

As opposed to previous approaches, we base our
reductions on streaming techniques and thus over-
come the efficiency barrier which was prohibitive
in previous approaches. However, the sketch-
ing/streaming techniques are tailored for the par-
ticular notion of adaptivity we consider, which is
of time-locality, i.e. optimum for a contiguous in-
terval in time. An interesting research direction
is to generalize our result to even stronger notions
of adaptivity, such as the “swap regret” notion of
Blum and Mansour.

References

Agarwal, A., Hazan, E., Kale, S., & Schapire, R.
(2006). Algorithms for portfolio management
based on the newton method. Proceedings of
the 23rd International Conference on Machine
Learning (ICML) (pp. 9–16).

Blum, A., & Mansour, Y. (2007). From exter-
nal to internal regret. The Journal of Machine
Learning Research, 8, 1307–1324.

Bousquet, O., & Warmuth, M. K. (2003). Track-
ing a small set of experts by mixing past poste-
riors. J. Mach. Learn. Res., 3, 363–396.

Cesa-Bianchi, N., & Lugosi, G. (2006). Predic-
tion, learning, and games. Cambridge Univer-
sity Press.

Cover, T. (1991). Universal portfolios. Math. Fi-
nance, 1, 1–19.

Freund, Y., Schapire, R. E., Singer, Y., & War-
muth., M. K. (1997). Using and combining pre-
dictors that specialize. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on the
Theory of Computing (pp. 334–343).

Efficient learning algorithms for changing environments

Gopalan, P., Jayram, T. S., Krauthgamer, R., &
Kumar, R. (2007). Estimating the sortedness
of a data stream. SODA (pp. 318–327). SIAM.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A.
(2006). Logarithmic regret algorithms for online
convex optimization. Proceedings of 19th An-
nual Conference on Learning Theory, (COLT)
(pp. 499–513).

Hazan, E., & Seshadhri, C. (2007). Adaptive al-
gorithms for online decision problems. Elec-
tronic Colloquium on Computational Complex-
ity (ECCC), 14.

Herbster, M., & Warmuth, M. K. (1998). Track-
ing the best expert. Mach. Learn., 32, 151–178.

Kozat, S., & Singer, A. (2007). Universal constant
rebalanced portfolios with switching. IEEE
International Conference on Acoustics, Speech
and Signal Processing, (ICASSP) (pp. 1129–
1132).

Lehrer, E. (2003). A wide range no-regret theo-
rem. Games and Economic Behavior, 42, 101–
115.

Woodruff, D. (2007). personal communications. .

Zinkevich, M. (2003). Online convex program-
ming and generalized infinitesimal gradient as-
cent. Proceedings of the Twentieth International
Conference (ICML) (pp. 928–936).

A. The streaming problem

We now explain Woodruff’s solution for maintain-
ing the set St ⊆ [1, n] in a streaming manner.

We specify the lifetime of integer i - if i = r2k,
where r is odd, then the lifetime of i is the interval
2k+2 + 1. Suppose the lifetime of i is m. Then for
any time t ∈ [i, i+m], integer i is alive at t. The
set St is simply the set of all integers that are
alive at time t. Obviously, at time t, the only
integer added to St is t - this immediately proves
Property (3). We now prove the other properties
-

Proof. (Property (1)) We need to show that some
integer in [s, (s + t)/2] is alive at time t. This is

trivially true when t − s < 2, since t − 1, t ∈ St.
Let 2` be the largest power of 2 such that 2` ≤
(t− s)/2. There is some integer x ∈ [s, (s+ t)/2]
such that 2`|x. The lifetime of x is larger than
2` × 2 + 1 > t− s, and x is alive at t.

Proof. (Property (2)) For 0 ≤ k ≤ blog tc, let us
count the number of integers of the form r2k (r
odd) alive at t. The lifetime of these integers are
2k+2 +1. The only integers alive lie in the interval
[t− 2k+2 − 1, t]. Since all of these integers of this
form are separated by gaps of 2k, there are at
most a constant number of such integers alive at
t. Totally, the size of St is O(log t).

